Promoter Activity of the Long Terminal Repeats of Porcine Endogenous Retroviruses of the Korean Domestic Pig

  • Ha, Hong-Seok (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Huh, Jae-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Dae-Soo (PBBRC, Interdisciplinary Research Program of Bioinformatics, College of Natural Sciences, Pusan National University) ;
  • Kang, Dong-Woo (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2006.11.20
  • Accepted : 2007.04.17
  • Published : 2007.08.31

Abstract

Porcine endogenous retroviruses (PERVs) in the pig genome represent a potential risk of infection in pig-to-human transplantation and are transmitted vertically. The solitary long terminal repeat (LTR) elements of the PERVs affect the replication properties of the individual viruses via their repeat sequences and by encoding a set of specific transcription factors. We examined the promoter activities of solitary LTR elements belonging to the PERV-A and -B families of the Korean domestic pig (KDP) using luciferase reporters. Three of the LTR structures (of PERV-A5-KDP, PERV-A7-KDP, PERV-A8-KDP) had different promoter activities in human HCT116 cells and monkey Cos7 cells, and potential negatively and positively acting regions affecting transcription were identified by deletion analysis. These data suggest that specific sequences in the U3 region of a given LTR element can affect the activities of promoter or enhancer elements in the PERV.

Keywords

Acknowledgement

Supported by : National Livestock Research Institute

References

  1. Akiyoshi, D. E., Denaro, M., Zhu, S., Greenstein, J. L., Banerjee, P., et al. (1998) Identification of a full-length cDNA for an endogenous retrovirus of miniature swine. J. Virol. 72, 4503-4507
  2. Bi, S., Gavrilova, O., Gong, D. W., Mason, M. M., and Reitman, M. (1997) Identification of a placental enhancer for the human leptin gene. J. Biol. Chem. 272, 30583-30588 https://doi.org/10.1074/jbc.272.48.30583
  3. Dunn, C. A., Romanish, M. T., Gutierrez, L. E., van de Lagemaat, L. N., and Mager, D. L. (2006) Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene 366, 335-342 https://doi.org/10.1016/j.gene.2005.09.003
  4. Kim, H.-S., Hirai, H., and Takenaka, O. (1996) Molecular features of the TSPY gene of gibbons and Old World monkeys. Chrom. Res. 4, 500-506 https://doi.org/10.1007/BF02261777
  5. Kim H.-M., Kim, J.-S., Lee Y.-S., Yang J.-Y., and Han K.-H. (2006) Transcriptional regulation of the methuselah gene by dorsal protein in Drosophila melanogaster. Mol. Cells 21, 261-268
  6. Krach, U., Fischer, N., Czauderna, F., and Tonjes, R. R. (2000) Comparison of replication-competent molecular clones of porcine endogenous retrovirus class A and class B derived from pig and human cells. J. Virol. 75, 5465-5472 https://doi.org/10.1128/JVI.75.12.5465-5472.2001
  7. Le Tissier, P., Stoye, J. P., Takeuchi, Y., Patience, C., and Weiss, R. A. (1997) Two sets of human-tropic pig retrovirus. Nature 389, 681-682 https://doi.org/10.1038/39489
  8. Ling, J., Pi, W., Bollag, R., Zeng, S., Kestintepe, M., et al. (2002) The solitary long terminal repeats of ERV9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells. J. Virol. 76, 2410-2423 https://doi.org/10.1128/jvi.76.5.2410-2423.2002
  9. Martin, U., Kiessl, V., Blusch, H., Haverich, A., von der Helm, K., et al. (1998) Expression of pig endogenous retrovirus by primary porcine endotherial cells and infection of human cells. Lancet 352, 692-694 https://doi.org/10.1016/S0140-6736(98)07144-X
  10. Patience, C., Takeuchi, Y., and Weiss, R. A. (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 276-282 https://doi.org/10.1038/nm0397-276
  11. Scheef, G., Fischer, N., Krach, U., and Tonjes, R. R. (2001) The number of a U3 repeat box acting as an enhancer in long terminal repeats of polytropic replication-competent porcine endogenous retroviruses dynamically fluctuates during serial virus passages in human cells. J. Virol. 75, 6933-6940 https://doi.org/10.1128/JVI.75.15.6933-6940.2001
  12. Takeuchi, Y., Patience, C., Magre, S., Weiss, R. A., Banerjee, P. T., et al. (1998) Host range and interference studies of three classes of pig endogenous retrovirus. J. Virol. 72, 9986-9991
  13. Tonjes, R. R. and Niebert, M. (2003) Relative age of proviral porcine endogenous retrovirus sequences in Sus scrofa based on the molecular clock hypothesis. J. Virol. 77, 12363-12368 https://doi.org/10.1128/JVI.77.22.12363-12368.2003
  14. Van der Laan, L. J. W., Lockey, C., Griffeth, B. C., Fraiser, F. S., Wilson, C. A., et al. (2000) Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 407, 90-94 https://doi.org/10.1038/35024089
  15. Wilson, C. A., Wong, S. W., Muller, J., Davidson, C. E., Rose, T. M., et al. (1998) Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J. Virol. 72, 3082-3087