References
- Achong, B. G., W. A. Mansell, M. A. Epstein, and P. Clifford. 1971. An unusual virus in cultures from a human nasopharyngeal carcinoma. J. Natl. Cancer Inst. 46: 299-307.
-
Appa, R. S., C.-G. Shin, P. Lee, and S. A. Chow. 2001. Role of the nonspecific DNA-binding region and
$\alpha$ helices within the core domain of retroviral integrase in selecting target DNA sites for integration. J. Biol. Chem. 276: 45846-45855. - Bujacz, G., J. Alexandratos, and A. Wlodawer. 1997. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J. Biol. Chem. 272: 18161-18168. https://doi.org/10.1074/jbc.272.29.18161
- Bushman, F. D. and R. Craigie. 1990. Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J. Virol. 64: 5645-5648.
-
Chaga, G., J. Hopp, and P. Nelson. 1999. Immobilized metal ion affinity chromatography on
$Co^{2+}$ -carboxymethyl aspartate-agarose Superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast muscle. Biotechnol. Appl. Biochem. 29: 19-24. - Chow, S. A., K. A. Vincent, V. Ellison, and P. O. Brown. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723-726. https://doi.org/10.1126/science.1738845
- Ciuffi, A. and F. D. Bushman. 2006. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 22: 388-395. https://doi.org/10.1016/j.tig.2006.05.006
- Craigie, R., T. Fujuwara, and F. Bushman. 1990. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62: 829-837. https://doi.org/10.1016/0092-8674(90)90126-Y
- Delelis, O., K. Carayon, E. Guiot, H. Leh, P. Tauc, J.-C. Brochon, J.-F. Mouscadet, and E. Deprez. 2008. Insight into the integrase-DNA recognition mechanism. J. Biol. Chem. 283: 27838-27849. https://doi.org/10.1074/jbc.M803257200
- Drelich, M., R. Wilhelm, and J. Mous. 1992. Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 protein in vitro. Virology 188: 459-468. https://doi.org/10.1016/0042-6822(92)90499-F
- llison, V. and P. O. Brown. 1994. A stable complex between integrase and viral DNA ends mediates HIV integration in vitro. Proc. Natl. Acad. Sci. U.S.A. 91: 7316-7320. https://doi.org/10.1073/pnas.91.15.7316
- Enders, J. and T. Peebles. 1954. Propagation in tissue culture of cytopathogenic agents from patients with measles. Proc. Soc. Biol. Med. 86: 277-287. https://doi.org/10.3181/00379727-86-21073
- Ernest, A.-A. and A. M. Skalka. 1997. A metal-induced conformational change and activation of HIV-1 integrase. J. Biol. Chem. 272: 16196-16205. https://doi.org/10.1074/jbc.272.26.16196
- Geiselhart, V., A. Schwantes, P. Bastone, M. Frech, and M. Lochelt. 2003. Features of the Env leader protein and the Nterminal Gag domain of feline foamy virus important for virus morphogenesis. J. Virol. 310: 235-244. https://doi.org/10.1016/S0042-6822(03)00125-9
- Kang, S. Y., D. G. Ahn, C. Lee, Y. S. Lee, and C.-G. Shin. 2008. Functional nucleotides of U5 LTR determining substrate specificity of prototype foamy virus integrase. J. Microbiol. Biotechnol. 18: 1044-1049.
- Katzman, M. and M. Sudol. 1994. In vitro activities of purified visna virus intergase. J. Viol. 68: 3558-3569.
- Kawasuji, T., M. Fuji, T. Yoshinaga, A. Sato, T. Fujiwara, and R. Kiyama. 2006. A platform for designing HIV integrase inhibitors. Part 2: A two-metal binding model as a potential mechanism of HIV integrase inhibitors. Bioorg. Med. Chem. 14: 8420-8429. https://doi.org/10.1016/j.bmc.2006.08.043
- Kulkosky, J., K. S. Jones, R. A. Katz, J. P. Mack, and A. M. Skalka. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331-2338. https://doi.org/10.1128/MCB.12.5.2331
- Lacellier, C.-H. and A. Saib. 2000. Minireview - Foamy viruses: Between retroviruses and pararetroviruses. J. Virol. 271: 1-8. https://doi.org/10.1006/viro.2000.0216
- Lafemina, R. L., P. L. Callahan, and M. G. Cordingley. 1991. Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Virol. 65: 5624-5630.
- Murray, S. M. and M. L. Linial. 2006. Foamy virus infection in primates. J. Med. Primatol. 35: 225-235. https://doi.org/10.1111/j.1600-0684.2006.00171.x
- Murphy, J. E., T. De Los Santos, and S. P. Goff. 1993. Mutational analysis of the sequences at the termini of the Moloney murine leukemia virus DNA required for integration. Virology 195: 432-440. https://doi.org/10.1006/viro.1993.1393
- Pahl, A. and R. M. Flugel. 1993. Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J. Virol. 67: 5426-5434.
- Pahl, A. and R. M. Flugel. 1995. Characterization of the human spumaretrovirus integrase by site-directed mutagenesis, by complementation analysis, and by swapping the zinc finger. J. Biol. Chem. 270: 2957-2966. https://doi.org/10.1074/jbc.270.7.2957
- Reicin, A. S., G. Kalpana, S. Paik, S. Marmon, and S. P. Goff. 1995. Sequence in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration. J. Virol. 69: 5904-5907.
- Roth, M. J., P. L. Schwartzberg, and S. P. Goff. 1989. Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence. Cell 58: 47-54. https://doi.org/10.1016/0092-8674(89)90401-7
- Shibata, K., Y. Morita, S. Abe, B. Stankovic, and E. Davies. 1999. A pyrase from pea stems: Isolation, purification, characterization and identification of an NTPase from the cytoskeleton fraction of pea stem tissue. Plant Physiol. Biochem. 37: 1-8. https://doi.org/10.1016/S0981-9428(99)80061-8
- Van Gent, D. C., C. Vink, A. A. Groeneger, and R. H. Plasterk. 1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12: 3261-3267.
- Vincent, K. A., V. Ellison, S. A. Chow, and P. O. Brown. 1993. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutation. J. Virol. 67: 425-437.
Cited by
- Biochemical characteristics of functional domains using feline foamy virus integrase mutants vol.46, pp.1, 2010, https://doi.org/10.5483/bmbrep.2013.46.1.118
- Structural and Functional Insights into Foamy Viral Integrase vol.5, pp.7, 2010, https://doi.org/10.3390/v5071850
- Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses vol.11, pp.9, 2010, https://doi.org/10.3390/v11090770
- Foamy Virus Integrase in Development of Viral Vector for Gene Therapy vol.30, pp.9, 2010, https://doi.org/10.4014/jmb.2003.03046