In a fixed bed reactor, adsorption capacity of $SO_2$ in simulated flue gases was investigated with NMO(natural manganese ore), composed of various metal oxides, iron ore and $CuO/{\gamma}-Al_2O_3$ as adsorbents. The experiment carried out in a fluidized bed reactor with variables such as gas velocity, temperature and particle size. Iron ore was excluded in the fluidized bed reactor experiment for the lower adsorption capacity. The adsorption of $SO_2$ in metal oxide is a typical chemisorption because the adsorption capacity of all adsorbents increased with temperature. The effect of particle size on the adsorption capacity was varied with the ratio, $U_o/U_{mf}$ and the difference of $U_o-U_{mf}$. $U_o$ is the gas velocity, $U_{mf}$ is the minimum fluidization gas velocity. $U_o/U_{mf}$ and $U_o-U_{mf}$ explain the behavior of the gas and solids in the fluidized bed reactor. From the performance equation of the fluidized bed reactor, kinetic reaction rate constants were obtained by the non-linear least square method. The adsorption capacity of NMO proved the potential use of $SO_2$ adsorbents.
Lee, Jung Hun;Yang, Tae Jun;Jeong, Sang Jun;Wei, Tung Shuen
Journal of Acupuncture Research
/
v.33
no.3
/
pp.101-116
/
2016
Objectives : This research was performed to investigate the effects of Ukgansan pharmacopuncture(U-PA) of focal brain ischemia induced by middle cerebral artery occlusion(MCAO) in rats. Methods : The subjects were divided into 5 groups : A control group, acupuncture group, pharmacopuncture group U-PA1($2.571mg/250g/40{\mu}{\ell}$), pharmacopuncture group U-PA2($6.428mg/250g/40{\mu}{\ell}$), and pharmacopuncture group U-PA3($12.855mg/250g/40{\mu}{\ell}$). The focal brain ischemia was induced by intraluminal filament insertion into the middle cerebral artery. After 3 days of MCAO, Ukgansan(UGS) pharmacopuncture treatment was performed on the GB20, and the day after being treated with pharmacopuncture, the Morris water maze test was carried out by the assigned group. The series of processes were treated 6 times. Thereafter Bax, Bcl-2, Bax/Bcl-2 ratio, mGluR5, density of neuronal cell, and ChAT were measured. Results : The results were as follows. 1. The intensity of Bax significantly decreased in the U-PA1, U-PA2, U-PA3 groups. 2. The Bax/Bcl-2 ratio significantly decreased in the U-PA3 group compared with the control group. 3. The neuroprotective effect on the hippocampal CA1 significantly increased in the U-PA1, U-PA2, U-PA3 groups compared with the control group. 4. The density of ChAT in the hippocampal CA1 significantly increased in the U-PA1, U-PA2, U-PA3 groups compared with the control group. Conclusion : These results suggest that UGS pharmacopuncture may have anti-apoptotic and neuroprotective effects on focal cerebral ischemia caused by intraluminal filament insertion into the middle cerebral artery in rats.
Kim, Hyeong-Su;Lee, Yeong-U;Choe, Chang-Beom;Yang, Myeong-Seung;Jeon, Pung-Il
Korean Journal of Materials Research
/
v.3
no.3
/
pp.245-252
/
1993
We investigated the changes of (U, Ce)$O_2$ powder characteristics with $CeO_2$ contents and ball-milling time and then studied on the sintering properties with those (U, Ce)$O_2$ powder characteristics. From the results of this study, it was concluded that the longer ball-milling time of (U, Ce)$O_2$ powder was, the finer its particle size was. Green and sintered densities were decreased with $CeO_2$ contensts increase. And also $CeO_2$ was recongized deteriorating oxide on the $UO_2$ sintering. In case of the lOwt. % $CeO_2$ contents, (U, Ce)$O_2$ sintered pellet which was made of ball-milled powder for 4 hours had few pores and its pores got near to the sphere. And its sintered density had the highest. Because its powder had higher surface area and its packing ratio was appropriated much better than others.
In this paper, we firstly use Krasnosel'skii fixed point theorem to investigate positive solutions for the following three-point boundary value problems for p-Laplacian with a parameter $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+{\lambda}f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1), λ > 0 is a parameter. Then we use Leggett-Williams fixed point theorem to study the existence of three positive solutions for the fractional boundary value problem $({\phi}_P(D^{\alpha}_{0}+u(t)))^{\prime}+f(t, u(t))=0$, 0$D^{\alpha}_{0}+u(0)=u(0)=u{\prime}{\prime}(0)=0$, $u^{\prime}(1)={\gamma}u^{\prime}(\eta)$ where ϕp(s) = |s|p−2s, p > 1, $D^{\alpha}_{0^+}$ is the Caputo's derivative, α ∈ (2, 3], η, γ ∈ (0, 1).
Journal of Korea Spatial Information System Society
/
v.11
no.1
/
pp.1-8
/
2009
The u-GIS national land information providing technology is the technology which maximizes the application of u- GIS data through the national land information platform technique of the next generation web and provides a user with the on-demand national land information in the ubiquitous environment. Recently, as the environment emphasizing the web as a platform 'Web 2.0' emerges, the where 2.0 which is paradigm is diffused in the spatial information area. And the Geo-spatial Web technology develops in a center. Moreover, it is changed to the open platform of the user participation trend. And the consumer of the geo-spatial information is changed to the end-user center from the public institution. The geo-spatial technique is technologically faced with the new challenge. In this paper, we analyze the technical tendency about a paradigm, And we present the u-GIS national land information platform technique, the u-GIS national land information visualization technology, the u-GIS national land information GeoDRM integrative technique, and the u-GIS national land information mobile application technology as the essential elemental technology for overcoming this.
In this paper, we give several sufficient conditions ensuring that any positive radial solution (u, v) of the following ${\gamma}$-Laplacian systems in the whole space ${\mathbb{R}}^n$ has the components symmetry property $u{\equiv}v$$$\{\array{-div({\mid}{\nabla}u{\mid}^{{\gamma}-2}{\nabla}u)=f(u,v)\text{ in }{\mathbb{R}}^n,\\-div({\mid}{\nabla}v{\mid}^{{\gamma}-2}{\nabla}v)=g(u,v)\text{ in }{\mathbb{R}}^n.}$$ Here n > ${\gamma}$, ${\gamma}$ > 1. Thus, the systems will be reduced to a single ${\gamma}$-Laplacian equation: $$-div({\mid}{\nabla}u{\mid}^{{\gamma}-2}{\nabla}u)=f(u)\text{ in }{\mathbb{R}}^n$$. Our proofs are based on suitable comparation principle arguments, combined with properties of radial solutions.
In this paper we investigate the multiplicity of positive solutions to a quasilinear Neumann problem; $$ {\varepsilon^m div($\mid$\bigtriangledown_u$\mid$^{m-2}\bigtriangledown_u) - u$\mid$u$\mid$^{m-2} + u$\mid$u$\mid$^{m-2} + u$\mid$u$\mid$^{p-2} = 0 in \omega $$ $$ \frac{\partial u}{\partial \nu} = 0 on \partial \omega, $$ making use of Ljusternik Schnirelmann category theory.
In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.
ex-AUC U$O_{2}$ 분말과 $Gd_{2}$O_{3}$ 분말을 기계적으로 혼합하여 소결한 U$O_{2}$-$Gd_{2}$O_{3}$ 소결체의 밀도 변화와 재소결 후 밀도변화를 기공크기 및 분포의 변화로 서술하였다. 수소분위기에서 175$0^{\circ}C$, 4시간 동안 소결하였을 때, 순수 U$O_{2}$의 소결밀도는 97.2% T.D.였으나 6wt% $Gd_{2}$O_{3}$ 첨가까지는 U$O_{2}$-$Gd_{2}$O_{3}$의 소결밀도는 $U^{+4}$와 $Gd^{+4}$의 상호확산 때문에 약 90% T.D.로 급격히 감소하였다. 그러나 6wt% 이상의 $Gd_{2}$O_{3}$가 첨가되면 우라늄이온 산화아와 산소침입으로 인하여 소결밀도는 오히려 증가하였다. 1$700^{\circ}C$에서 재소결시킬 때 순수 U$O_{2}$ 소결체에서는 재소결 시간에 따라 밀도증가가 발생하였다. U$O_{2}$-$Gd_{2}$O_{3}$ 소결체 경우에는 재소결시 밀도가 감소하였으나 재소결 시간이 증가함에 따라 다시 밀도는 증가하였고, 6wt%$Gd_{2}$O_{3}$가 첨가된 U$O_{2}$-$Gd_{2}$O_{3}$ 소결체에서 밀도가 가장 많이 감소하였다.
In this paper, we consider the following Kirchhoff-type Schr$\ddot{o}$dinger system $$\{-\(a_1+b_1{\int}_{\mathbb{R^3}}{\mid}{\nabla}u{\mid}^2dx\){\Delta}u+{\gamma}V(x)u=\frac{2{\alpha}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha-2}u{\mid}v{\mid}^{\beta}\;in\;\mathbb{R}^3,\\-\(a_2+b_2{\int}_{\mathbb{R^3}}{\mid}{\nabla}v{\mid}^2dx\){\Delta}v+{\gamma}W(x)v=\frac{2{\beta}}{{\alpha}+{\beta}}{\mid}u{\mid}^{\alpha}{\mid}v{\mid}^{\beta-2}v\;in\;\mathbb{R}^3,\\u,v{\in}H^1(\mathbb{R}^3),$$ where $a_i$ and $b_i$ are positive constants for i = 1, 2, ${\gamma}$ > 0 is a parameter, V (x) and W(x) are nonnegative continuous potential functions. By applying the Nehari manifold method and the concentration-compactness principle, we obtain the existence and concentration of ground state solutions when the parameter ${\gamma}$ is sufficiently large.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.