References
- J. Bourgain, Global solutions of Nonlinear Schrodinger Equations, Amer. Math. Soc. Colloq. Publ. 46 AMS, Providence, RI, 1999.
- J. Byeon, L. Jeanjean, and M. Maris, Symmetry and monotonicity of least energy solutions, Calc. Var. PDEs 36 (2009), no. 4, 481-492. https://doi.org/10.1007/s00526-009-0238-1
- T. Cazenave, Semilinear Schrodinger equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
- W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615-622. https://doi.org/10.1215/S0012-7094-91-06325-8
- W. Chen and C. Li, Classification of positive solutions for nonlinear differential and integral systems with critical exponents, Acta Math. Sci. Ser. B Engl. Ed. 29 (2009), no. 4, 949-960.
- M. Franca, Classification of positive solutions of p-Laplace equation with a growth term, Arch. Math. (BRNO), 40 (2004), no. 4, 415-434.
-
N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial solutionsto div(
$\left|Du\right|^{m-2}$ ) + K($(\left|x\right|)u^q$ = 0 in${\mathbb{R}}^n$ , J. Math. Soc. Japan 45 (1993), no. 4, 719-742. https://doi.org/10.2969/jmsj/04540719 -
Y. Lei and C. Li, Integrability and asymptotics of positive solutions of a
${\gamma}$ -Laplacian system, J. Differential Equations 252 (2012), no. 3, 2739-2758. https://doi.org/10.1016/j.jde.2011.10.009 -
Y. Lei, C. Li, and C. Ma, Decay estimation for positive solutions of a
${\gamma}$ -Laplace equation, Discrete Contin. Dyn. Syst. 30 (2011), no. 2, 547-558. https://doi.org/10.3934/dcds.2011.30.547 - C. Li and L. Ma, Uniqueness of positive bound states to Schrodinger systems with critical exponents, SIAM J. Math. Anal. 40 (2008), no. 3, 1049-1057. https://doi.org/10.1137/080712301
-
T. Lin and J. Wei, Ground state of N coupled nonlinear Schrodinger equations in
${\mathbb{R}}^n$ , n$\leq$ 3, Commun. Math. Phys. 255 (2005), no. 3, 629-653. https://doi.org/10.1007/s00220-005-1313-x - P. Quittner and Ph. Souplet, Symmetry of components for semilinear elliptic systems, SIAM J. Math. Anal. 44 (2012), no. 4, 2545-2559. https://doi.org/10.1137/11085428X
- J. Serrin and H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math. 189 (2002), no. 1, 79-142. https://doi.org/10.1007/BF02392645
- Ph. Souplet, The proof of the Lane-Emden conjecture in four space dimensions, Adv. Math. 221 (2009), no. 5, 1409-1427. https://doi.org/10.1016/j.aim.2009.02.014