• Title/Summary/Keyword: U1

Search Result 15,311, Processing Time 0.04 seconds

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR IMPULSIVE DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Miao, Chunmei;Ge, Weigao;Zhang, Zhaojun
    • The Pure and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.147-163
    • /
    • 2014
  • In this paper, we study the existence of positive solutions for singular impulsive differential equations with integral boundary conditions $$\{u^{{\prime}{\prime}}(t)+q(t)f(t,u(t),u^{\prime}(t))=0,\;t{\in}\mathbb{J}^{\prime},\\{\Delta}u(t_k)=I_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\{\Delta}u^{\prime}(t_k)=-L_k(u(t_k),u^{\prime}(t_k)),\;k=1,2,{\cdots},p,\\u=(0)={\int}_{0}^{1}g(t)u(t)dt,\;u^{\prime}=0,$$) where the nonlinearity f(t, u, v) may be singular at v = 0. The proof is based on the theory of Leray-Schauder degree, together with a truncation technique. Some recent results in the literature are generalized and improved.

Signed degree sequences in signed 3-partite graphs

  • Pirzada, S.;Dar, F.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.9-14
    • /
    • 2007
  • A signed 3-partite graph is a 3-partite graph in which each edge is assigned a positive or a negative sign. Let G(U, V, W) be a signed 3-partite graph with $U\;=\;\{u_1,\;u_2,\;{\cdots},\;u_p\},\;V\;=\;\{v_1,\;v_2,\;{\cdots},\;v_q\}\;and\;W\;=\;\{w_1,\;w_2,\;{\cdots},\;w_r\}$. Then, signed degree of $u_i(v_j\;and\;w_k)$ is $sdeg(u_i)\;=\;d_i\;=\;d^+_i\;-\;d^-_i,\;1\;{\leq}\;i\;{\leq}\;p\;(sdeg(v_j)\;=\;e_j\;=\;e^+_j\;-\;e^-_j,\;1\;{\leq}\;j\;{\leq}q$ and $sdeg(w_k)\;=\;f_k\;=\;f^+_k\;-\;f^-_k,\;1\;{\leq}\;k\;{\leq}\;r)$ where $d^+_i(e^+_j\;and\;f^+_k)$ is the number of positive edges incident with $u_i(v_j\;and\;w_k)$ and $d^-_i(e^-_j\;and\;f^-_k)$ is the number of negative edges incident with $u_i(v_j\;and\;w_k)$. The sequences ${\alpha}\;=\;[d_1,\;d_2,\;{\cdots},\;d_p],\;{\beta}\;=\;[e_1,\;e_2,\;{\cdots},\;e_q]$ and ${\gamma}\;=\;[f_1,\;f_2,\;{\cdots},\;f_r]$ are called the signed degree sequences of G(U, V, W). In this paper, we characterize the signed degree sequences of signed 3-partite graphs.

  • PDF

Wideband Microstrip Antenna with the Double U-slots (이중 U-슬롯을 이용한 광대역 마이크로스트립 안테나)

  • 오은실;윤영중
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7B
    • /
    • pp.727-736
    • /
    • 2002
  • In this paper, the broadband microstrip antenna with small size, thin-profile, conformability and ease of manufacture is proposed for providing PCS(down link: 1.75GHz∼1.78GHz, up link: 1.84GHz∼1.87GHz) '||'&'||' IMT-2000(down link: 1.92GHz∼1.98GHz, up link: 2.11GHz∼2.17GHz) services simultaneously. By using double U-slots and matching stub, the bandwidth and operating performance of printed antenna was significantly improved, with need for a complex fabrication procedure. We have also studied the various parameters of the U-slot$_2$for the performances of the antenna. Impedance bandwidth of the wideband microstrip antenna with the double U-slots is about 30.45% (VSWR<2)

AT LEAST FOUR SOLUTIONS TO THE NONLINEAR ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.2
    • /
    • pp.197-210
    • /
    • 2009
  • We prove the existence of multiple solutions (${\xi},{\eta}$) for perturbations of the elliptic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}A{\xi}+g_1({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\\A{\xi}+g_2({\xi}+ 2{\eta})=s{\phi}_1+h\;in\;{\Omega},\end{array}$$ where $lim_{u{\rightarrow}{\infty}}\frac{gj(u)}{u}={\beta}_j$, $lim_{u{\rightarrow}-{\infty}}\frac{gj(u)}{u}={\alpha}_j$ are finite and the nonlinearity $g_1+2g_2$ crosses eigenvalues of A.

  • PDF

NONTRIVIAL SOLUTIONS FOR AN ELLIPTIC SYSTEM

  • Nam, Hyewon;Lee, Seong Cheol
    • Korean Journal of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.153-161
    • /
    • 2015
  • In this work, we consider an elliptic system $$\left{\array {-{\Delta}u=au+bv+{\delta}_1u+-{\delta}_2u^-+f_1(x,u,v) && in\;{\Omega},\\-{\Delta}v=bu+cv+{\eta}_1v^+-{\eta}_2v^-+f_2(x,u,v) && in\;{\Omega},\\{\hfill{70}}u=v=0{\hfill{90}}on\;{\partial}{\Omega},}$$, where ${\Omega}{\subset}R^N$ be a bounded domain with smooth boundary. We prove that the system has at least two nontrivial solutions by applying linking theorem.

Kato's Inequalities for Degenerate Quasilinear Elliptic Operators

  • Horiuchi, Toshio
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • Let $N{\geq}1$ and p > 1. Let ${\Omega}$ be a domain of $\mathbb{R}^N$. In this article we shall establish Kato's inequalities for quasilinear degenerate elliptic operators of the form $A_pu$ = divA(x,$\nabla$u) for $u{\in}K_p({\Omega})$, ), where $K_p({\Omega})$ is an admissible class and $A(x,\xi)\;:\;{\Omega}{\times}\mathbb{R}^N{\rightarrow}\mathbb{R}^N$ is a mapping satisfying some structural conditions. If p = 2 for example, then we have $K_2({\Omega})\;= \;\{u\;{\in}\;L_{loc}^1({\Omega})\;:\;\partial_ju,\;\partial_{j,k}^2u\;{\in}\;L_{loc}^1({\Omega})\;for\;j,k\;=\;1,2,{\cdots},N\}$. Then we shall prove that $A_p{\mid}u{\mid}\;\geq$ (sgn u) $A_pu$ and $A_pu^+\;\geq\;(sgn^+u)^{p-1}\;A_pu$ in D'(${\Omega}$) with $u\;\in\;K_p({\Omega})$. These inequalities are called Kato's inequalities provided that p = 2. The class of operators $A_p$ contains the so-called p-harmonic operators $L_p\;=\;div(\mid{{\nabla}u{\mid}^{p-2}{\nabla}u)$ for $A(x,\xi)={\mid}\xi{\mid}^{p-2}\xi$.

CHARACTERIZATIONS OF THE PARETO DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.51-57
    • /
    • 2007
  • In this paper, we establish characterizations of the Pareto distribution by the independence of record values. We prove that $X{\in}PAR(1,{\beta})$ for ${\beta}$ > 0, if and only if $\frac{X_{U(n)}}{X_{U(n)}-X_{U(n+1)}}$ and $X_{U(n)}$ are independent for $n{\geq}1$. And we show that $X{\in}PAR(1,{\beta})$ for ${\beta}$ > 0, if and only if $\frac{X_{U(n)}-X_{U(n+1)}}{X_{U(n)}}$ and $X_{U(n)}$ are independent for $n{\geq}1$.

  • PDF

Research on the Relative Importance and the Priority for the Functions of the U-City Service Aid Organization (U-City 서비스 지원기관 기능의 상대적 중요도와 우선순위 연구)

  • Yi, Mi Sook;Shin, Dong Bin;Lee, Jae Yong
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.35-43
    • /
    • 2013
  • The aim of this research is to analyze the priority to functions of the U-city Service Aid Organization(USAO), which is to support invigorating U-City industry. This research analyzes the relative importance and the priority about the functional area and components of UASO based on AHP. This research also performs a sensitivity analysis. The research result shows that relative importance of functional area is like following orders: 1) distribution of U-City service-related information, 2) quality certification of U-City-related products and services, 3) R&D of U-City technology, 4) standardization of U-City, 5) U-City human resource development. The relative importance order of functional components is 1) establishment of U-City information distribution organization, 2) construction and management of U-City information distribution network, 3) supporting U-City information distribution and price policy, 4) providing U-City information list for distribution, 5) preparation and application of quality certification standard of U-City products and services, 6) research on legal system of U-City items, targets, and procedures for quality certification, 7) research, analysis, and provision of U-City information distribution situation, 8) level examination of constructed infrastructures and services in U-City, 9) U-City core technology development and localization of technology, 10) standardization of collected U-City information, service classification, distribution system. This research result can be applied directly to design functions of USAO. The result also can be used for duty management, human resource planning, or resource allocation.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

A LIOUVILLE THEOREM OF AN INTEGRAL EQUATION OF THE CHERN-SIMONS-HIGGS TYPE

  • Chen, Qinghua;Li, Yayun;Ma, Mengfan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1327-1345
    • /
    • 2021
  • In this paper, we are concerned with a Liouville-type result of the nonlinear integral equation of Chern-Simons-Higgs type $$u(x)=\vec{\;l\;}+C_{\ast}{{\displaystyle\smashmargin{2}{\int\nolimits_{\mathbb{R}^n}}}\;{\frac{(1-{\mid}u(y){\mid}^2){\mid}u(y){\mid}^2u(y)-\frac{1}{2}(1-{\mid}u(y){\mid}^2)^2u(y)}{{\mid}x-y{\mid}^{n-{\alpha}}}}dy.$$ Here u : ℝn → ℝk is a bounded, uniformly continuous function with k ⩾ 1 and 0 < α < n, $\vec{\;l\;}{\in}\mathbb{R}^k$ is a constant vector, and C* is a real constant. We prove that ${\mid}\vec{\;l\;}{\mid}{\in}\{0,\frac{\sqrt{3}}{3},1\}$ if u is the finite energy solution. Further, if u is also a differentiable solution, then we give a Liouville type theorem, that is either $u{\rightarrow}\vec{\;l\;}$ with ${\mid}\vec{\;l\;}{\mid}=\frac{\sqrt{3}}{3}$, when |x| → ∞, or $u{\equiv}\vec{\;l\;}$, where ${\mid}\vec{\;l\;}{\mid}{\in}\{0,1\}$.