• Title/Summary/Keyword: U-loop

Search Result 185, Processing Time 0.027 seconds

Assessment of Magnetic Field Mitigation and Electrical Environmental Effects for Commercially Operating 154kV Transmission Lines with Passive Loop

  • Lee, Byeong-Yoon;Myung, Sung-Ho;Ju, Mun-No;Cho, Yeun-Gyu;Lee, Dong-Il;Lim, Yun-Seog;Kim, Sang-Beom
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.991-996
    • /
    • 2014
  • Power frequency magnetic field is still a critical problem for new construction of overhead power transmission lines in Korea because most people have been concerned about possibly carcinogenic effects of it. Although reference level of power frequency(60Hz) magnetic field has been set to 200uT in ICNIRP guidelines published in 2010, Korean government has no intention of adjusting 83.3uT specified by law in 2006 to this new reference level in consideration of people's concerns for the time being. Regardless of the current regulated magnetic field value, electric utility company has been trying to reduce magnetic field in the residential area in the vicinity of overhead power transmission lines to take into account of public concerns on the long-term effect of magnetic fields. In an effort to reduce magnetic field, engineering side has made considerable efforts to develop passive loop based, cost-effective mitigation technique of power frequency magnetic field more than ten years. In order to verify developed power frequency magnetic field mitigation technique based on passive loop, a horizontal type of passive loop was designed and installed for commercially operating 154kV overhead power transmission line for the first time in Korea. The measurement results before and after the installation of passive loop showed that magnetic field could be reduced to about 20%. The electrical environmental effects such as AN, RI and TVI were assessed before and after the installation of passive loop and these values were complied with the requirements specified by electric utility. It has been confirmed from the field test results that passive loop could be commercially and cost-effectively utilized to mitigate power frequency magnetic field.

Evaluation of Effective Thermal Conductivity of Closed-loop Vertical Ground Heat Exchanger (수직 밀폐형 지중 열교환기의 현장시공 및 유효열전도도 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • 한국방재학회:학술대회논문집
    • /
    • 2010.02a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • 본 연구에서는 수직 밀폐형 지중 열교환기를 현장 시험시공하고 현장 열응답 시험을 수행하여 보어홀과 지반의 유효열전도도를 측정하였다. 뒤채움용 그라우트재는 벤토나이트와 시멘트가 고려되었으며 첨가제로는 천연규사와 흑연을 사용하고, 지중 열교환기 파이프 단면은 일반적으로 시공되는 U-loop 파이프 단면과 파이프 사이의 열간섭 효과를 최소화 한 3공형 파이프 단면이 착용되었다. 시멘트-천연규사 그라우트재가 벤토나이트-천연규사 그라우트재 보다 큰 유효열전도도를 보이고 흑연을 첨가한 그라우트는 시멘트와 벤토나이트 모두에서 천연규사만 첨가하였을 때 보다 유효열전도도가 높게 나타났다. 3공형 파이프 단면의 경우 단면에 따른 영향을 비교하기 위해 그라우트는 시멘트-천연규사와 벤토나이트-천연규사를 사용하였으며 유효 열전도도 측정결과 각각 3.65 W/mK, 3.40 W/mK으로 일반 U-loop 파이프 단면을 사용하였을 때 보다 높게 나타났다.

  • PDF

A Comparison Between Round Loop and Existing Octagonal Loop Detectors (원형검지기와 기존검지기의 비교 분석에 관한 연구)

  • 장덕명;김영남
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.4
    • /
    • pp.35-52
    • /
    • 1994
  • In order to operate the computerized traffic signal system, it requires the detectors which ensure the exact detections of actual traffic data (e.g., traffic volume, occupancy and velocity of vehicles). The octagonal detectors are used currently in Korea. However, the maintenance of the detectors has many problems with the road repairs and the constructions on the pavement, and failure due to the disconnection of the wires. Serious delay due to the long installation time of loops also causes the traffic disturbances. The low sensitivities and splash-over effect can sometimes create error data after installation of the octagonal loops. The mai purpose of this study is to evaluate the feasibility of domestic use of the round (circular) inductive loops which developed recently in U.S.A. It was found that the round loops are comparable to the existing octagonal loops. In addition, the use of the high quality of materials in the round loop system can reduce the current problems and weakpoints of the octagonal loops. The installation cost of the round loop was found out as economic as the octagonal loop. The installation time of the round loop system can be reduced with the specially equipped loop truck, and wide/deep slots without sharp corners can extend the durability without serious stress of loop head wires. In conclusion, the round loop is superior to the octagonal type in overall points. It is recommended that the localization of the materials and equipments of round loop system is required to carry out the extensive local installations. Also, several contractors to meet the nationwide demand should be arranged to gurantee the proper maintenance and operation of the systems.

  • PDF

Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

The Analysis of Stability in a Steam Generator (증기발생기의 안정성 분석)

  • Shin Whan Kim;Goon Cherl Park
    • Nuclear Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.279-289
    • /
    • 1985
  • The purpose of this paper is to investigate the density-wave oscillation type instability in the recirculating loop of U-tube steam generator (UTSG). The perturbed and nodalized conservations equations based on the drift-flux model have been derived to obtain the single-and two-phase pressure drop perturbations, by taking into account the slip between phases, nonuniform heat flux and heated wall dynamics. To assess the stability, the frequency domain technique with the Nyquist criterion has been used under the constant pressure drop boundary condition through the loop. The computer implementation of this model, SASG, was used for the parametric study of the steam generator in Kori-Unit 1. The results of the parametric study revealed important factors influencing UTSG stability margin.

  • PDF

Experiments and MAAP4 Assessment for Core Mixture Level Depletion After Safety Injection Failure During Long-Term Cooling of a Cold Leg LB-LOCA

  • Kim, Y. S.;B. U. Bae;Park, G. C.;K. Y. Sub;Lee, U. C .
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.91-107
    • /
    • 2003
  • Since DBA(Design Basis Accidents) has been studied rather separately from SA(Severe Accidents) in the conventional nuclear reactor safety analysis, the thermal hydraulics during transition between DBA and SA has not been identified so much as each accident itself. Thus, in this study, the thermal hydraulic behavior from DBA to the commencement of SA has been experimentally and analytically investigated for the long-term cooling phase of LB-LOCA(Large-Break Loss-of-Coolant Accident). Experiments were conducted for both cases of the loop seal open and closed in an integral test loop, named as SNUF (Seoul National University Facility), which was scaled down to l/6.4 in length and 1/178 in area of the APR1400 (Advanced Power Reactor 1400MWe). The core mixture level was a main measured value since it took major role in the fuel heat-up rate, the location of fuel melting initiation and the channel blockage by melting material during SA. Experimental results were compared to MAAP4.03 to assess its model of calculating the core mixture level. MAAP4.03 overestimates the core two- phase mixture level because sweep-out and spill-over and the measures to simulate the status of loop seal are not included, which is against the conservatism. Thus, it is recommended that MAAP4.03 should be improved to simulate the thermal hydraulic phenomena, such as sweep-out, spill-over and the status of loop seal.

A Design of Channel Models for the ISDN Subscriber Loops (ISDN 가입자 루프에 대한 전송로 모델의 설계)

  • 백제인;박원식;이유경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.293-305
    • /
    • 1994
  • In this paper the efficient channel models of the subscriber loops for the ISDN U-interface digital transmission are presented. Several configuration medels of the loop network are adopted from the CCITT recommendations, and various parameters specifying the physical dimensions are determined in accordance with the measurements of the loop characteristics of Korea. A typical loop interfacing circuit is applied at both ends of the loops and the overall transmissing circuit model is obtained. Based on this circuit model of transmission. 3 types of signal path models, related to transmission, echo, and near end crosstalk noise are defined and their transfer function are respectively derived as the channel models. As examples of the proposed channel models, numerical calculation has been performed for some loop configuration models and the channel responses are investigation in both domains of frequency and time. It is shown that various changes of the loop characteristics can well be explained in terms of the proposed models. And these models can efficiently be used for the simulation of the digital transmission over the subscriber loop.

  • PDF

Data-based Control for Linear Time-invariant Discrete-time Systems

  • Park, U. S.;Ikeda, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1993-1998
    • /
    • 2004
  • This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the openloop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a linear matrix inequality with a rank constraint.

  • PDF

Experimental Study on Heat Exchange Efficiency of Combined Well & Open-Closed Loops Geothermal System (지하수정호와 결합한 복합지열시스템의 열교환 효율에 대한 실험적 연구)

  • Song, Jae-Yong;Lee, Geun-Chun;Park, Namseo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.43-50
    • /
    • 2018
  • The temperature of underground water generally remains constant regardless of the season. therefore, it is possible to get plenty of energy if we use characteristics of underground water for both cooling and heating. This study evaluates efficiency of real size coaxial and U-tube type complex geothermal system which is combined with underground water well. This study also evaluates relative efficiency/adaptability through comparison with existing geothermal systems(vertical closed loop system, open loop system(SCW)). The heat exchange capacity of complex geothermal system according to temperature difference between circulating water and underground water shows very high significance by increasing proportionally. The temperature change of underground water according to injection energy, shows very high linear growth aspect as injection thermal volume heightens. As a result of evaluation of heat exchange volume between complex geothermal system and comparative geothermal system, coaxial type has 26.1 times greater efficiency than comparative vertical closed type and 2.8 times greater efficiency than SCW type. U-tube type has 26.5 tims greater efficiency than comparative vertical closed type and 2.8 times greater than SCW type as well. This means complex geothermal system has extremely outstanding performance.