• Title/Summary/Keyword: Typhoon Disasters

Search Result 171, Processing Time 0.03 seconds

Analysis of Steep slope Disaster Sites using Geographic Information System (GIS를 활용한 급경사지 재해현장 분석 -전북 무주군, 장수군, 진안군 중심으로-)

  • Lee, Min-Seok;Oh, Jeong-Rim;Park, Dug-Keun;Kim, Man-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.940-945
    • /
    • 2010
  • There are human casualties that caused by slope-stability related disasters such as landslide and debris flow during typhoon and rainy season every year in Korea. These disaster sites can be analyzed systematically using digital topographic data and aerial photogrammetry. In this study, geographical factors such as slope degree, geology, height, and soil depth are analyzed in four landslide-disaster sites from Muju, Jinan, and Jangsu County based on digital elevation maps generated by ArcGIS. Each site showed different characteristics in geology and geography and it is found that GIS can be utilized for the visualization of steep-slope failure areas.

  • PDF

Analysis of Policies to Activate the Volunteer Fire Brigade in Japan (일본 의용소방대 활성화 정책의 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.64-73
    • /
    • 2011
  • Japan is a representative state where the volunteer fire brigade consisting of private citizens is well developed although it has an advanced fire fighting system established by local governments. Japan realized the limitation of response by governmental fire fighting system when large-scale natural disasters such as earthquake or typhoon and has developed and promoted several policies to activate the volunteer fire brigade. This study analyzes the policies of the volunteer fire brigade in Japan in detail and suggests policies which can be introduced to activate the volunteer fire brigade in Korea.

A Study on the Stability of Rope Guying of Tower Cranes. (타워크레인 로프가잉 안정성 검토에 관한 연구)

  • Lee, Won-Suk;Ho, Jong-Kwan;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.247-252
    • /
    • 2009
  • With the increasing use of tower cranes higher than free standing height, the importance of lateral support is also growing. Since the fall of 43 tower cranes hit by the last typhoon 'Mami' in 2003, regulations and concerns about safety of construction equipment have increased and construction laws regarding lateral support have been strengthened. In Korea, where there are many large-scale apartment housing construction works with the development of new towns, Rope Guying is a more economical construction method than Wall Brace which fixes building structure like building wall and slab. The safety of this Rope Guying is not verified and many construction works are still carried out based on the experience of site managers. There has been no case of construction work where frame and measurements are applied. The objective of this study is to examine the safety of Rope Guying method and ensure the effective implementation of equipment and prevention of disasters.

  • PDF

Use of Random Coefficient Model for Fruit Bearing Prediction in Crop Insurance

  • Park Heungsun;Jun Yong-Bum;Gil Young-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.381-394
    • /
    • 2005
  • In order to estimate the damage of orchards due' to natural disasters such as typhoon, severe rain, freezing or frost, it is necessary to estimate the number of fruit bearing before and after the damage. To estimate the fruit bearing after the damages are easily done by delegations, but it cost too high to survey every insured farm household and calculate the fruit bearing before the damage. In this article, we suggest to use a random coefficient model to predict the numbers of fruit bearing in the orchards before the damage based on the tree age and the area information.

Prediction of Storm Surge Height Using Synthesized Typhoons and Artificial Intelligence (합성태풍과 인공지능을 활용한 폭풍해일고 예측)

  • Eum, Ho-Sik;Park, Jong-Jib;Jeong, Kwang-Young;Park, Young-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.892-903
    • /
    • 2020
  • The rapid and accurate prediction of storm-surge height during typhoon attacks is essential in responding to coastal disasters. Most methods used for predicting typhoon data are based on numerical modeling, but numerical modeling takes significant computing resources and time. Recently, various studies on the expeditious production of predictive data based on artificial intelligence have been conducted, and in this study, artificial intelligence-based storm-surge height prediction was performed. Several learning data were needed for artificial intelligence training. Because the number of previous typhoons was limited, many synthesized typhoons were created using the tropical cyclone risk model, and the storm-surge height was also generated using the storm surge model. The comparison of the storm-surge height predicted using artificial intelligence with the actual typhoon, showed that the root-mean-square error was 0.09 ~ 0.30 m, the correlation coefficient was 0.65 ~ 0.94, and the absolute relative error of the maximum height was 1.0 ~ 52.5%. Although errors appeared to be somewhat large at certain typhoons and points, future studies are expected to improve accuracy through learning-data optimization.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Introduction to Empirical Approach to Estimate Rice Yield and Comparison with Remote Sensing Approach (경험적 벼 작황예측 방법에 대한 소개와 원격탐사를 이용한 예측과의 비교)

  • Kim, Junhwan;Lee, Chung-Kuen;Sang, Wangyu;Shin, Pyeong;Cho, Hyeounsuk;Seo, Myungchul
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.733-740
    • /
    • 2017
  • This review introduces the empirical approach of rice yield forecasting and compares it with remote sensing approach. The empirical approach, was based on the results of the rice growth and yield monitoring experiment in 17 sites, estimated rice yield by recombination of yield components. The number of spikelet per unit area was from results of experiment sites and grain filling rate was estimated from linear regression with sunshine hours. The estimation results were relatively accurate from 2010 to 2016. The smallest error was 1 kg / 10a and the largest error was 19 kg / 10a. The largest error was caused by the typhoon. The empirical approach did not fully reflect the spatial variation caused by disasters such as typhoon or pest. On the other hand, remote sensing could explain spatial variation caused by disasters. Therefore, if there are not any disaster in rice field, both approaches are valid and remote sensing will be more accurate when any local disaster occurs.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF

돌발홍수 모니터링 및 예측 모형을 이용한 예측(F2MAP)태풍 루사에 의한 양양남대천 유역의 돌발홍수 모니터링

  • Kim, Byung-Sik;Hong, Jun-Bum;Choi, Kyu-Hyun;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1145-1149
    • /
    • 2006
  • The typhoon Rusa passed through the Korean peninsula from the west-southern part to the east-northern part in the summer season of 2002. The flash flood due to the Rusa was occurred over the Korean peninsula and especially the damage was concentrated in Kangnung, Yangyang, Kosung, and Jeongsun areas of Kangwon-Do. Since the latter half of the 1990s the flash flood has became one of the frequently occurred natural disasters in Korea. Flash floods are a significant threat to lives and properties. The government has prepared against the flood disaster with the structural and nonstructural measures such as dams, levees, and flood forecasting systems. However, since the flood forecasting system requires the rainfall observations as the input data of a rainfall-runoff model, it is not a realistic system for the flash flood which is occurred in the small basins with the short travel time of flood flow. Therefore, the flash flood forecasting system should be constructed for providing the realistic alternative plan for the flash flood. To do so, firstly, Flash Flood Monitoring and Prediction (FFMP) Model must be developed suitable to Korea terrain. In this paper, We develop the FFMP model which is based on GIS, Radar techniques and hydro-geomorphologic approaches. We call it the F2MAP model. F2MAP model has three main components (1) radar rainfall estimation module for the Quantitative Precipitation Forecasts (QPF), (2) GIS Module for the Digital terrain analysis, called TOPAZ(Topographic PArametiZation), (3) hydrological module for the estimation of threshold runoff and Flash Flood Guidance(FFG). For the performance test of the model developed in this paper, F2MAP model applied to the Kangwon-Do, Korea, where had a severe damage by the Typhoon Rusa in August, 2002. The result shown that F2MAP model is suitable for the monitoring and the prediction of flash flood.

  • PDF

A Study on Typhoon-Disasers in the Korean Peninsula (한반도의 태풍피해에 관한 연구)

  • 유희정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.4
    • /
    • pp.61-68
    • /
    • 1983
  • In order to study the disaster of typhoons which hit the Korean peninsula a period of 22 years from 1959 through 1980 was covered to collect necessary data with respect to attack of typhoons and their damage. Centering around the Korean peninsula, typhoons which attacked between 1959 and 1980 were grouped according to their treking routes and damage for detailed analyses. The results are summarized as follows: 1. The average annual damage of typhoons in the Korean peninsula was found to be 1.27 from June to September. The monthly distributions were found to be 53.6% in August, 28.6% in September and 14.2% in July. 2. About an half (56.4%) of the typhoons which hit the Korean peninsula passed through the western coast and 27.3% through the southern and 14.6% through the eastern. Typhoons of the we8tern coast were divided by their treking routes as 25.5% in CWE type (Jul., Aug., Sep.), 14.6% in WE type (Jul., Aug.), 16.3% in W type (Jul.). 3. The minimum SLP averaged 976.6mb and ordere:l by the treking routes as E$_1$$_1$ and CWE types are higher 20mb than S, E or WE types. 4. The Korean peninsula was damaged by all number of the typhoons in WE or S type, by a third at number of its in E or WE and WI type. 5. The annual probabilities of typhoon-disasters were 0.773 for once or more, 0. 409 for twice or more, and 0.091 for three times or more. Hearvy damage experienced in the Korean peninsula are found to have an annual. 6. Amount of the damage by the treking routes in ordered S>WE>CWE>E>W$_1$, and heavy storms experienced in the Xorean peninsula are found to have accompanied the WE and S types during the months of August and September. 7. The average annual damages were found to be 110 at the death-tall, 45, 000 at the sufferers and 10.5 billion at the property damage. 8. Seventy-sex percent of the all damage in the Korean peninsula distributed on the district from the 36th Parallel south and included Chie Ju island.

  • PDF