References
- Anton, B., B. Blanton, and S. Reinaldo(2016), Multi-Output Articial Neural Network for Storm Surge Prediction in North Carolina, Neural Networks, arXiv:1609.07378.
- French, J., M. Robert, F. Taku, and A. Kamal(2017), Combining machine learning with computational hydrodynamics for prediction of tidal surge inundation at estuarine ports, IUTAM symposium on storm surge modelling and forecasting, Vol. 25, pp. 28-35.
- Holland, G. J.(1980), An analytic model of the wind and pressure profiles in hurricanes, Monthly Weather Review, Vol. 108, pp. 1212-1218. https://doi.org/10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
- Jung, S. H., H. S. Cho, J. G Kim, and G. H. Lee(2018), Prediction of water level in a tidal river using a deep-learning based LSTM model, Journal of Korea Water Resources Association, Vol. 51, No. 12, pp. 1207-1216.
- Kim, H. J. and S. W. Suh(2019), Estimation of Frequency of Storm Surge Heights on the West and South Coasts of Korea Using Synthesized Typhoons. Journal of Korean Society of Coastal and Ocean Engineers Vol. 31, No. 5, pp. 241-252. https://doi.org/10.9765/KSCOE.2019.31.5.241
- Lee, G. H., S. H. Jung, and D. E. Lee(2018), Comparison of physicsbased and data-driven models for streamflow simulation of the Mekong river. Journal of Korea Water Resources Association, Vol. 51, No. 6, pp. 503-514. https://doi.org/10.3741/JKWRA.2018.51.6.503
- Lee, H. Y., D. S. Kim, J. R. Park, and S. J. Hong(2017), Operation of Real-time Storm Surge Response System for Decision-making Support. Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 3, pp. 367-380. https://doi.org/10.9798/KOSHAM.2017.17.3.367
- Luettich, R. A. and J. J. Westerink(2004), Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44.XX.
- Luettich, R. A., S. Hu, and J. J. Westerink(1994), The development of the direct stress solution technique for three-dimensional hydrodynamic models using finite elements, International, Journal for Numerical Methods in Fluids, Vol. 19, pp. 295-319. https://doi.org/10.1002/fld.1650190403
- Luettich, R. A., S. Hu, J. J. Westerink, and N. W. Scheffner (1992), Modeling 3-D Circulation Using Computations for the Western North Atlantic and Gulf of Mexico, Estuarine and Coastal Modeling II, M. Spaulding [ed.], ASCE, pp. 632-643.
- Matsumoto, K., T. Takanezawa, and M. Ooe(2000), Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan, Journal of Oceanography, Vol. 56, pp. 567-581. https://doi.org/10.1023/A:1011157212596
- Park, C. H. and I. M. Chung(2020), Evaluating the groundwater prediction using LSTM model. Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 273-283. https://doi.org/10.3741/JKWRA.2020.53.4.273
- Park, J. K., B. S. Kim, W. S. Jung, E. B. Kim, and D. G. Lee(2006), Change in Statistical Characteristics of Typhoon Afferting the Korean Peninsula, Jounal of Korean Meteorological Society: Atmosphere, Vol 16, No. 1, pp. 1-17.
- Vickery, P. J. and D. Wadhera(2009), Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H*Wind data. Journal of Applied Meteorology and Climatology, Vol. 47, No. 10, pp. 2497-2517. https://doi.org/10.1175/2008JAMC1837.1
- Willoughby, H. E., R. Darling, W. R, and M. E. Rahn(2006), Parametric representation of the primary hurricane vortex. Part II: A new family of sectionally continuous profiles, Monthly Weather Review, Vol. 134, pp. 1102-1120. https://doi.org/10.1175/MWR3106.1
- Xie, L., S. Bao, L. J. Pietrafesa, K. Foley, and M. Fuentes(2006), A real-time hurricane surface wind forecasting model: formulation and verification. Monthly Weather Review, Vol. 134, No.5, pp. 1355-1370. https://doi.org/10.1175/MWR3126.1