• Title/Summary/Keyword: Two-Stage Power Amplifier

Search Result 111, Processing Time 0.029 seconds

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF

One-Chip Integration of a New Signal Process Circuit and an ISFET Urea Sensor (새로운 신호처리회로와 ISFET 요소센서의 단일칩 집적)

  • 서화일;손병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.46-52
    • /
    • 1991
  • A new signal process circuit using two ISFETs as the input devices of the MOS differential amplifier stage for an ISFET biosensor has been developed. One chip integration of the newly developed signal process circuit, ISFETs and a Pt quasi-reference electrode has been carried out according to modified LOCOS p-well CMOS process. The fabricated chip showed gains of 0.8 and 1.6, good liniarity in the input-output relationship and very small power dissipation, 4mW. The chip was applied to realize a urea sensor by forming an immobilized urease membrane, using lift-off technique. on the gate of an ISFET. The urea sensor chip showed stable responses in a wide range of urea concentrations.

  • PDF

A MB-OFDM UWB 0.18-μm CMOS RF Front-End Receiver

  • Kim, Chang-Wan
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • An RF front-end dual-conversion receiver for $3{\sim}5\;GHz$ MB-OFDM UWB systems is implemented in $0.18\;{\mu}m$ CMOS technology. The receiver includes a two-stage UWB LNA, an RF mixer, an IF I/Q mixer, and a frequency synthesizer. The proposed receiver adopts the dual-conversion architecture to mitigate the burden of design of the frequency synthesizer. Accordingly, the proposed frequency synthesizer generates four LO tones from only one VCO. The receiver front-end achieves power gain of 16.3 to 21 dB, NF of 7 to 7.6 dB over $3{\sim}5\;GHz$, and IIP3 of -21 dBm, while consuming 190 mW from a 1.8 V supply.

Range-Scaled 14b 30 MS/s Pipeline-SAR Composite ADC for High-Performance CMOS Image Sensors

  • Park, Jun-Sang;Jeong, Jong-Min;An, Tai-Ji;Ahn, Gil-Cho;Lee, Seung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.70-79
    • /
    • 2016
  • This paper proposes a low-power range-scaled 14b 30 MS/s pipeline-SAR composite ADC for high-performance CIS applications. The SAR ADC is employed in the first stage to alleviate a sampling-time mismatch as observed in the conventional SHA-free architecture. A range-scaling technique processes a wide input range of 3.0VP-P without thick-gate-oxide transistors under a 1.8 V supply voltage. The first- and second-stage MDACs share a single amplifier to reduce power consumption and chip area. Moreover, two separate reference voltage drivers for the first-stage SAR ADC and the remaining pipeline stages reduce a reference voltage disturbance caused by the high-speed switching noise from the SAR ADC. The measured DNL and INL of the prototype ADC in a $0.18{\mu}m$ CMOS are within 0.88 LSB and 3.28 LSB, respectively. The ADC shows a maximum SNDR of 65.4 dB and SFDR of 78.9 dB at 30 MS/s, respectively. The ADC with an active die area of $1.43mm^2$ consumes 20.5 mW at a 1.8 V supply voltage and 30 MS/s, which corresponds to a figure-of-merit (FOM) of 0.45 pJ/conversion-step.

The design of the high efficiency DC-DC Converter with Dynamic Threshold MOS switch (Dynamic Threshold MOS 스위치를 사용한 고효율 DC-DC Converter 설계)

  • Ha, Ka-San;Koo, Yong-Seo;Son, Jung-Man;Kwon, Jong-Ki;Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.176-183
    • /
    • 2008
  • The high efficiency power management IC(PMIC) with DTMOS(Dynamic Threshold voltage MOSFET) switching device is proposed in this paper. PMIC is controlled with PWM control method in order to have high power efficiency at high current level. DTMOS with low on-resistance is designed to decrease conduction loss. The control parts in Buck converter, that is, PWM control circuits consist of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit as a block. The Saw-tooth generator is made to have 1.2 MHz oscillation frequency and full range of output swing from ground to supply voltage(VDD:3.3V). The comparator is designed with two stage OP amplifier. And the error amplifier has 70dB DC gain and $64^{\circ}$ phase margin. DC-DC converter, based on Voltage-mode PWM control circuits and low on-resistance switching device, achieved the high efficiency near 95% at 100mA output current. And DC-DC converter is designed with LDO in stand-by mode which fewer than 1mA for high efficiency.

  • PDF

Picosecond Mid-Infrared 3.8 ㎛ MgO:PPLN Optical Parametric Oscillator Laser with High Peak Power

  • Chen, Bing-Yan;Wang, Yu-Heng;Yu, Yong-Ji;Jin, Guang-Yong
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2021
  • In this study, a compact, picosecond, mid-infrared 3.8 ㎛ MgO:PPLN optical parametric oscillator (OPO) laser output with high peak power is realized using a master oscillator power amplifier (MOPA) 1 ㎛ solid-state laser seeded by a picosecond fiber laser as the pump source. The pump source was a 50 MHz and 10 ps fiber seed source. After AOM pulse selection and two-stage solid-state amplification, a 1,064 nm laser output with a repetition frequency of 1-2 MHz, pulse width of 9.5 ps, and a maximum average power of 20 W was achieved. Furthermore, a compact short cavity with a unsynchronized pump is adopted through the design of an OPO cavity structure. When the injection pump power was 15 W and the repetition frequency was 1 MHz, the average output power of idler light was 1.19 W, and the corresponding peak power was 119 kW. The optical conversion efficiency was 7.93%. When the repetition frequency was increased to 2 MHz, the average output power of idler light was 1.63 W, the corresponding peak power was 81.5 kW, and the optical conversion efficiency was 10.87%. At the same time, the output wavelength was measured at 3,806 nm, and the beam quality was MX2 = 3.21 and MY2 = 3.34.

Design of a 1-8V 6-bit IGSPS CMOS A/D Converter for DVD PRML (DVD PRML을 위한 1.8V 6bit IGSPS 초고속 A/D 변환기의 설계)

  • 유용상;송민규
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.305-308
    • /
    • 2002
  • An 1.8V 6bit IGSPS ADC for high speed data acquisition is discussed in this paper. This ADC is based on a flash ADC architecture because the flash ADC is the only practical architecture at conversion rates of IGSPS and beyond. A straightforward 6bit full flash A/D converter consists of two resistive ladders with 63 laps, 63 comparators and digital blocks. One important source of errors in flash A/D converter is caused by the capacitive feedthrough of the high frequency input signal to the resistive reference-lauder. Consequently. the voltage at each tap of the ladder network can change its nominal DC value. This means large transistors have a large parasitic capacitance. Therefore, a dual resistive ladder with capacitor is employed to fix the DC value. Each resistive ladder generates 32 clean reference voltages which alternates with each other. And a two-stage amplifier is also used to reduce the effect of the capacitive feedthrough by minimizing the size of MOS connected to reference voltage. The proposed ADC is based on 0.18${\mu}{\textrm}{m}$ 1-poly 6-metal n-well CMOS technology, and it consumes 307㎽ at 1.8V power supply.

  • PDF

Development of the Low Noise Amplifier for Cellular CDMA Using a Resistive Decoupling Circuit (저항 결합회로를 이용한 Cellular CDMA용 저잡음 증폭기의 구현)

  • 전중성;김동일
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.4
    • /
    • pp.635-641
    • /
    • 1998
  • This paper presents development of a small size LNA operating at 824 ∼ 849 MHz used for a receiver of a CELLULAR CDMA Base station and a transponder. Using resistive decoupling circuits, a signal at low frequency is dissipated by a resistor. This design method increases the stability of the LNA and is suitable for input stage matching. The LNA consists of low noise GaAs FET ATF-10136 and internally matched VNA-25. The LNA is fabricated with both the RF circuit and the self-bias circuits in aluminum housing. As a result, the characteristics of the LNA implemented here shows above 35dB in gain and below 0.9dB in noise figure, 18.6dBm P1dB power, a typical two tone IM3, -31.17dB with single carrier backed off 10dB from P1dB.

  • PDF

Design of Variable Gain Low Noise Amplifier with Memory Effects Feedback for 5.2 GHz Band (5.2 GHz 대역에서 동작하는 기억 기능 특성을 갖는 궤환 회로를 이용한 변환 이득 저잡음 증폭기 설계)

  • Lee, Won-Tae;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper presents a novel gain control system composed of a feedback circuit, Two stage Low Noise Amplifier (LNA) using 0.18 um CMOS technology for 5.2 GHz. The feedback circuit consists of the seven function blocks: peak detector, comparator, ADC, IVE(Initial Voltage Elimination) circuit, switch, storage, and current controller. We focus on detecting signal and designing storage circuit that store the previous state. The power consumption of the feedback circuit in the system can be reduced without sacrificing the gain by inserting the storage circuit. The adaptive front-end system with the feedback circuit exhibits 11.39~22.74 dB gain, and has excellent noise performance at high gain mode. Variable gain LNA consumes 5.68~6.75 mW from a 1.8 V supply voltage.

A 800MHz~5.8GHz Wideband CMOS Low-Noise Amplifier (800MHz~5.8GHz 광대역 CMOS 저잡음 증폭기 설계)

  • Kim, Hye-Won;Tak, Ji-Young;Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.45-51
    • /
    • 2011
  • This paper presents a wideband low-noise amplifier (LNA) covering 800MHz~5.8GHz for various wireless communication standards by utilizing in a 0.13um CMOS technology. Particularly, the LNA consists of two stages to improve the low-noise characteristics, that is, a cascode input stage and an output buffer with noise cancellation technique. Also, a feedback resistor is exploited to help achieve wideband impedance matching and wide bandwidth. Measure results demonstrate the bandwidth of 811MHz~5.8GHz, the maximum gain of 11.7dB within the bandwidth, the noise figure of 2.58~5.11dB. The chip occupies the area of $0.7{\times}0.9mm^2$, including pads. DC measurements reveal the power consumption of 12mW from a single 1.2V supply.