• Title/Summary/Keyword: Two-Fluid Model

Search Result 1,231, Processing Time 0.026 seconds

Simulation of industrial multiphase flows (공학적 관점에서의 다상유동 문제의 수치해석)

  • Han aehoon;Alajbegovic Ales;Seo Hyeoncheol;Blahowsky Peter
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.389-392
    • /
    • 2002
  • In many industrial applications, multiphase flow analysis is the norm rather than an exception as compared to more-conventional single-phase investigation. This paper describes the implementation of the multiphase flow simulation capability in the general purpose CFD software AVL FIRE/SWIFT. The governing equations are discretized based on a finite volume method (FVM) suitable fur very complex geometry, The pressure field is obtained using the SIMPLE algorithm. Depending on the characteristics of the multiphase flow to be examined, the user can choose either the two-fluid model or an explicit interface-tracking model based on the Volume-of-Fluid approach. For truly 'multi'-phase flow problems, it is also possible to apply a hybrid model where certain phases are explicitly tracked while the other phases are handled by the two fluid model. In order to demonstrate the capability of the method, applications to the Taylor bubble flow simulations are presented.

  • PDF

Optimization analysis on collection efficiency of vacuum cleaner based on two-fluid and CFD-DEM model

  • Wang, Lian;Chu, Xihua
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2020
  • The reasonable layout of vacuum cleaner can effectively improve the collection efficiency of iron filings generated in the process of steel production. Therefore, in this study, the CFD-DEM coupling model and two-fluid model are used to calculate the iron filings collection efficiency of vacuum cleaner with different inclination/cross-sectional area, pressure drop and inlet angle. The results are as follows: The CFD-DEM coupling method can truly reflect the motion mode of iron filings in pneumatic conveying. Considering the instability and the decline of the growth rate of iron filings collection efficiency caused by high pressure drop, the layout of 75° inclination is suggested, and the optimal pressure drop is 100Pa. The optimal simulation results based on two-fluid model show that when the inlet angle and pressure drop are in the range of 45°~65° and 70Pa~100Pa, larger mass flow rate of iron filings can be obtained. It is hoped that the simulation results can offer some suggestion to the layout of vacuum cleaner in the rolling mill.

An Investigation of Lattice Boltzmann Multi-phase Model and it Application (래티스볼츠만 다상류 모델의 검토 및 응용)

  • Kang, Ho-Keun;Ahn, Soo-Whan
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.269-270
    • /
    • 2006
  • A finite difference lattice Boltzmann model which allows us to simulate gas-liquid two-phase flows with large density difference, for instance, 800 times for air and water is considered. Two-particle model is used and the density difference is introduced by changing the acceleration according to the fluid density. Numerical measurement of surface tension agrees well with theoretical predictions. Simulations of two-phase phenomenon for phase-transition is carried out, showing applicability of the model for two-phase flows. The two-dimensional cavitating flow around a board set up in the fluid way is also simulated. As a result, it was confirmed that the FDLB method with two-particle model was effective in numerical simulation of cavitating flow and the bubble periodically grew up at the low pressure area behind the board, in which the fluid condition was influenced by the cavitation number.

  • PDF

An explicit approximation of the central angle for the curved interface in double-circle model for horizontal two-phase stratified flow

  • Taehwan Ahn;Dongwon Jeong;Jin-Yeong Bak;Jae Jun Jeong;Byongjo Yun
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3139-3143
    • /
    • 2024
  • Stratified flow in horizontal tubes is frequently observed in gas-liquid two-phase flow system. In the two-fluid modeling, it is important to define the interface shape in solving the balance equations to determine the key parameters such as the interfacial transfer terms, void fraction, and pressure drop. A double-circle model is usually introduced to depict the concave-down interface in a horizontal circular tube under the stratified-wavy flow condition. However, calculation of the central angle in the double-circle model, which represents the interfacial curvature, requires an appropriate iterative numerical root-finding scheme to solve the implicit transcendental equation. In this study, an explicit approximate equation has been proposed without requirement of the iterative scheme and numerical instability, which is expected to improve the coding process and computation efficiency in the analysis code with the two-fluid model.

Numerical simulation of the flow in pipes with numerical models

  • Gao, Hongjie;Li, Xinyu;Nezhad, Abdolreza Hooshmandi;Behshad, Amir
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.523-527
    • /
    • 2022
  • The objective of this study is to simulate the flow in pipes with various boundary conditions. Free-pressure fluid model, is used in the pipe based on Navier-Stokes equation. The models are solved by using the numerical method. A problem called "stability of pipes" is used in order to compare frequency and critical fluid velocity. When the initial conditions of problem satisfied the instability conditions, the free-pressure model could accurately predict discontinuities in the solution field. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The results of this paper are analyzed by hyperbolic numerical method. Results show that the level of numerical diffusion in the solution field and the range of well-posedness are two important criteria for selecting the two-fluid models. The solutions for predicting the flow variables is approximately equal to the two-pressure model 2. Therefore, the predicted pressure changes profile in the two-pressure model is more consistent with actual physics. Therefore, in numerical modeling of gas-liquid two-phase flows in the vertical pipe, the present model can be applied.

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

Mechanistic Pressure Jump Terms based on the System Eigenvalues of Two-Fluid Model for Bubbly Flow (2-유체 모델의 고유치에 근거한 기포류에서의 계면압력도약항)

  • Chung, M.S.;Lee, W.J.;Lee, S.J.;Song, C.H.;Ha, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.81-86
    • /
    • 2001
  • Interfacial pressure jump terms based on the physics of phasic interface and bubble dynamics are introduced into the momentum equations of the two-fluid model for bubbly flow. The pressure discontinuity across the phasic interface due to the surface tension force is expressed as the function of fluid bulk moduli and bubble radius. The consequence is that we obtain from the system of equations the real eigenvalues representing the void-fraction propagation speed and the pressure wave speed in terms of the bubble diameter. Inversely, we obtain an analytic closure relation for the radius of bubbles in the bubbly flow by using the kinematic wave speed given empirically in the literature. It is remarkable to see that the present mechanistic model using this practical bubble radius can indeed represent both the mathematical well-posedness and the physical wave speeds in the bubbly flow.

  • PDF

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

NUMERICAL CALCULATION OF TWO FLUID SOLAR WIND MODEL

  • KIM S.-J.;KIM K.-S.;MOON Y.-J.;CRO K.-S.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • We have developed a two fluid solar wind model from the Sun to 1 AU. Its basic equations are mass, momentum and energy conservations. In these equations, we include a wave mechanism of heating the corona and accelerating the wind. The two fluid model takes into account the power spectrum of Alfvenic wave fluctuation. Model computations have been made to fit observational constraints such as electron($T_e$) and proton($T_p$) temperatures and solar wind speed(V) at 1 AU. As a result, we obtained physical quantities of solar wind as follows: $T_e$ is $7.4{\times}10^5$ K and density(n) is $1.7 {\times}10^7\;cm^{-3}$ in the corona. At 1 AU $T_e$ is $2.1 {\times} 10^5$ K and n is $0.3 cm^{-3}$, and V is $511 km\;s^{-1}$. Our model well explains the heating of protons in the corona and the acceleration of the solar wind.