• Title/Summary/Keyword: Turn-off control

Search Result 218, Processing Time 0.05 seconds

A New Energy Recovery Snubber for Boost Converter (부스트 컨버터용 새로운 에너지 재생 스너버)

  • 김만고
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.57-63
    • /
    • 1997
  • The power diode's reverse recovery current when switching on the main switch results in losses of the switch in boost converter. The high turn-on losses can be controlled by snubber circuit. In this paper, a new snubber circuit which can reduce the turn-on current stress mentioned above and recover trapped snubber energy in capacitor is proposed for boost converter. The control of boost converter with proposed snubber is the same as the conventional one. In addition, the energy recovery circuit can be implemented with a few passive components. The analysis for proposed circuit is presented, and the validity of the circuit is verified through simulation and experiment.

  • PDF

A Simple Structure of Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) Buck Converter with Coupled Inductor

  • Wei, Xinxin;Luo, Ciyong;Nan, Hang;Wang, Yinghao
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1480-1488
    • /
    • 2015
  • In this paper, a revolutionary buck converter is proposed with soft-switching technology, which is realized by a coupled inductor. Both zero-voltage switching (ZVS) of main switch and zero-current switching (ZCS) of freewheeling diode are achieved at turn on and turn off without using any auxiliary circuits by the resonance between the parasitic capacitor and the coupled inductor. Furthermore, the peak voltages of the main switch and the peak current of the freewheeling diode are significantly reduced by the coupled inductor. As a result, the proposed converter has the advantages of simple circuit, convenient control, low consumption and so on. The detailed operation principles and steady-state analysis of the proposed ZVS-ZCS buck converter are presented, and detailed power loss analysis and some simulation results are also included. Finally, experimental results based on a 200-W prototype are provided to verify the theory and design of the proposed converter.

Simulation of IGBT Dimmer Using EMTDC (EMTDC를 이용한 IGBT Dimmer 시뮬레이션)

  • Kim, Bo-Kyong;Park, Min-Won;Seong, Ki-Chul;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.194-196
    • /
    • 2001
  • Light dimming is based on adjusting the voltage which gets to the lamp. Light dimming has been possible for many decades by using adjustable power resistors and adjustable transformers. The power electronics have proceeded quietly since 1960. Between 1960-1970 thyristors and triacs came to market. Using those components it was quite easy to make small and inexpensive light dimmers which have goof efficiency. This type of electronic light dimmers became available after 1970 and are nowadays used in very many locations like homes, restaurants, conference rooms and in stage lighting. But the problem of thyristor dimmer have been that it has poor efficiency and voltage drop. Recently IGBT(Insulated Gate Bipolar Transistor) control is a new way to do light dimming for improving this problems. IGBT dimmer has many other advantages over traditional thyristor dimmer there are no huge current spikes and EMI caused by turn on Using IGBT it is possible to make the turn-off rate relatively slot to achieve quite operations in terms of EMI and acoustical or incandescent lamp filament noise. For the development of IGBT dimmer. This paper shows the effects of IGBT dimmer compared with thyristor dimmer through a simulation using EMTDC.

  • PDF

New Modeling of Switching Devices Considering Power Loss in Electromagnetic Transients Program Simulation

  • Kim, Seung-Tak;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.592-601
    • /
    • 2016
  • This paper presents the modeling of insulated-gate bipolar transistor (IGBT) in electromagnetic transients program (EMTP) simulation for the reliable calculation of switching and conduction losses. The conventional approach considering the physical property of switching devices requires many attribute parameters and large computation efforts. In contrast, the proposed method uses the curve fitting and interpolation techniques based on typical switching waveforms and a user-defined component with variable resistances to capture the dynamic characteristics of IGBTs. Therefore, the simulation time can be efficiently reduced without losing the accuracy while avoiding the extremely small time step, which is required in simulation by the conventional method. The EMTP based simulation includes turn-on and turn-off transients of IGBT, saturation state, forward voltage of free-wheeling diode, and reverse recovery characteristics, etc. The effectiveness of proposed modeling for the EMTP simulation is verified by the comparison with experimental results obtained from practical implementation in hardware.

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

A Study on the High-Efficiency. High-Power-Factor AC/DC Boost Converter Using Energy Recovery (에너지 회생 스너버를 적용한 고효률, 고역률 AC/DC Boost 컨버터에 관한 연구)

  • Ryu, Chang-Gyu;Kim, Yong;Bae, Jin-Yong;Baek, Soo-Hyun;Choi, Geun-Soo;Gye, Sang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • A passive lossless turn-on/turn-off snubber network is proposed for the boost PWM converter. Previous AC/DC PFC Boost Converter perceives feed forward signal of output for average current-mode control. Previous Boost Convertor, the Quantity of input current will be decreased by the decrease of output current in light load, and also Power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC, low line current harmonic distortions and tight output voltage regulations using energy recovery circuit. All of the semiconductor devices in the converter are turned on under exact or near zero voltage switching(ZVS). No additional voltage and current stresses on the main switch and main diode occur. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

A Study on the Domestic Fireworks System (불꽃놀이 시스템의 국산화에 대한 연구)

  • Choi, Joon-Kee;Son, Moo-Yeol;Lee, Jong-Kwang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Fireworks are used in our country, most of U.S. equipment and software systems are old and outdated technology. If the Fireworks receives a signal, then the start of the pre-placed as the signal proceeds to the middle of a problem with the site manager directly turn off the power and turn on again. Manager, where it should be handled directly. So, in this paper, we researched a domestically developed technology to escape the reality that relies on foreign technology. Our technology should be suited the convenience, reliability and lower cost. This technology can generate revenue from overseas.

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

Design of Pixel Circuit of Micro LED Display with Double Gate Thin Film Transistors (더블 게이트 박막 트랜지스터를 활용한 Micro LED 디스플레이 화소 회로 설계)

  • Kim, Taesoo;Jeon, Jaehong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.50-55
    • /
    • 2022
  • Due to the wavelength shift problem of micro LED caused by the change of current density, the active matrix driving pixel circuit that is used in OLED cannot be applied to micro LED displays. Therefore, we need a gray scale method based on modulation of duration time of light emission. In this study, we propose the PWM-controlled micro LED pixel circuit based on CMOS thin film transistors (TFTs). By adopting CMOS inverter structure, we can reduce the number of storage capacitors from the circuit and make the operating speed of the circuit faster. Most of all, our circuit is designed to make operating speed of PWM circuit faster by adopting feedback effect through double gate TFT structure. As a result, it takes about 4.7ns to turn on the LED and about 5.6ns to turn it off. This operating time is short enough to avoid the color distortion and help the precise control of the gray scale.

Development of the Inverter System with UPS Function for the Air-Conditioning Blower (UPS 기능을 갖는 A/C Blower용 인버터 시스템 개발)

  • Lim, Seung-Beom;Lee, Yun-Ha;Mok, Hyung-Soo;Ji, Jun-Keun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.302-308
    • /
    • 2011
  • The HVAC(Heating Ventilation and Air Conditioning) system is only controlled by turn on/turn off operations with AC 380V input. Therefore, the efficiency of the system is reduced and accoustic noise problem occurs. Also, the blower is shut down at the AC power failure. In this paper, the inverter system with UPS function for the A/C(Air Conditioning) blower is proposed. Proposed inverter system which is powered from the AC and DC voltage can control speed, operation mode, and soft-start time using CAN communication. In case of the CAN communication failure, RS-232 communication could be used to control the hardware directly by the engineer that can solve existing problems. To verify the validity of proposed inverter system, simulations and experiments are carried out.