• 제목/요약/키워드: Turbulent Pipe Flow

검색결과 150건 처리시간 0.022초

LES에 의한 원관 내 난류의 유동 해석 (Large Eddy Simulation of Turbulent Pipe Flow)

  • 고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권3호
    • /
    • pp.437-446
    • /
    • 2003
  • A large eddy simulation (LES) is performed for turbulent pipe flow. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The effects of grid fineness which can be well prediction of turbulent behavior in near wall region is investigated. The subgrid scale turbulent models are applied and validated emphasis is placed on the flow details of turbulent pipe flow The calculated Reynolds number is 360 based on the wall shear velocity and the inlet pipe diameter. The predicted turbulent statistics are evaluated by comparing with the DNS data of turbulent pipe flow Performed by Eggels et al. The agreement of LES with DNS data is shown to be satisfactory. The proper grid fineness of the well prediction of turbulent pipe flow is suggested and the turbulent behavior is analyzed by depict the contour plot of fluctuating velocity components.

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.

균일조도 원형관 마찰계수 (Friction Factor for Circular Pipe with Uniform Roughness)

  • 유동훈
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.165-172
    • /
    • 1993
  • 균일조도 원형관에서 수행한 Nikuraclse의 실험결과에 따라 관로흐름은 층류(層流), 천이층류(遷移層流), 완난류(緩亂流), 천이난류(遷移亂流)와 전난류(全亂流)등 다섯가지로 구분되며, 천이층류는 조건에 따라 층류로부터 완난류로 천이하는 경우와 층류로부터 전난류로 바로 천이하는 경우가 있다. 각 조건은 관경의 조고에 대한 비로 결정될 수 있으며, 각 조건에 대하여 원형관 마찰계수를 양해법으로 구하는 수식을 개발하였다. 본 수식은 Nikuradse의 실험결과와 비교하여 상당히 양호한 결과를 보여준다.

  • PDF

동심 환형관 내의 난류유동의 직접수치모사 (DNS of turbulent concentric annular pipe flow)

  • 정서윤;리광훈;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

난류 파이프 유동에서의 레이놀즈 수 영향: Part I. 평균 유동장 및 저차 난류통계치 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART I. MEAN FLOW FIELD AND LOW-ORDER STATISTICS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.28-38
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the mean velocity profile, root-mean-square of velocity fluctuations, Reynolds shear stress and turbulent viscosity.

축을 중심으로 회전하는 관유동에서 난류열전달의 모형화 (Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow)

  • 신종근
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part II. 순간농도장, 고차 난류통계치 및 물질전달수지 (REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART II. INSTANTANEOUS CONCENTRATION FIELD, HIGHER-ORDER STATISTICS AND MASS TRANSFER BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.59-67
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The effects of Reynolds number on the turbulent mass transfer are identified in the higher-order statistics(Skewness and Flatness factor) and instantaneous concentration fields. The budgets of turbulent mass fluxes and concentration variance were computed and analyzed to elucidate the effect of Reynolds number on turbulent mass transfer. Furthermore, to understand the correlation between near-wall turbulence structure and concentration fluctuation, we present an octant analysis in the vicinity of the pipe wall.

환형관내 유동에서의 항력감소를 위한 준최적 제어 (Suboptimal Control for Drag Reduction in Turbulent Pipe Flow)

  • 최정일;;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.377-382
    • /
    • 2001
  • A suboptimal control law in turbulent pipe flow is derived and tested. Two sensing variables ${\partial}p/{\partial}{\theta}\;|_w\;and\;{\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ are applied with two actuations ${\phi}_{\theta}$ and ${\phi}_r$. To test the suboptimal control law, direct numerical simulations of turbulent pipe flow at $Re_r=150$ are performed. When the control law is applied, a $13{\sim}23%$ drag reduction is achieved. The most effective drag reduction is made at the pair of ${\partial}{\upsilon}_{\theta}/{\partial}r\;|_w$ and ${\theta}_r$. An impenetrable virtual wall concept is useful for analyzing the near-wall suction and blowing. The virtual wall concept is useful for analyzing the near-wall behavior of the controlled flow. Comparison of the present suboptimal control with that of turbulent channel flow reveals that the curvature effect is insignificant.

  • PDF

난류 파이프 유동 내 응집 구조의 횡 방향 성장 (Spanwise growth of coherent structures in turbulent pipe flow)

  • 안준선;이진영;황진율
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.26-31
    • /
    • 2021
  • The spanwise growth of turbulence structures in turbulent pipe flow was investigated using the direct numerical simulation data of Re𝜏 = 544, 934 and 3008. Two-point correlations and pre-multiplied energy spectra of streamwise velocity fluctuations were examined along the spanwise direction. The arclength direction is defined as r𝛳, which is useful for an analogy with the spanwise direction for channels or boundary layers; here, r and 𝛳 are the radial distance from the core and the azimuthal angles, respectively. Both analyses showed that the arclength scales increased with increasing the wall-normal distance. It showed that the coherent structures were confined in the core region due to the crowding effect of a circular pipe geometry. The pipe flow simulation could describe a realistic geometrical flow along the azimuthal direction, unlike the simulations of turbulent channel or boundary layer flow using periodic boundary conditions along the spanwise direction. The present results provided the spanwise organization of energy-containing motions over a broad range of scales in turbulent pipe flow.

난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part I. 평균 농도장 및 저차 난류통계치 (REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART I. MEAN CONCENTRATION FIELD AND LOW-ORDER STATISTICS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제17권3호
    • /
    • pp.1-10
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. To show the effects of Reynolds number on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuations, turbulent mass fluxes, cross-correlation coefficient, turbulent diffusivity and turbulent Schmidt number are presented.