• 제목/요약/키워드: Turbulent Flows

검색결과 739건 처리시간 0.026초

평판 근접 후류에서 경계층의 유동조건에 따른 난류유동장 (Turbulent Flow Field on Boundary Layer Flow Conditions in the Near-Wake of a Flat Plate)

  • 김동하;장조원
    • 한국항공운항학회지
    • /
    • 제12권3호
    • /
    • pp.25-39
    • /
    • 2004
  • An experimental study was quantitatively carried out in order to investigate the influence of flow conditions on a boundary layer in the near-wake of a flat plate. Tripping wires attached at various positions were selected to change flow conditions of a boundary layer in the vicinity of trailing edge. The flows such as laminar, transitional, and turbulent boundary layer at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. Measurements were made at freestream velocity of 6.0m/s, and the corresponding Reynolds number is $2.8{\times}10^5$. An x-type hot-wire probe(55P61) was employed to measure at 8 stations in the near-wake region. Test results show that the near-wake of the flat plate for the case of a laminar and transitional boundary layer is sensitive to mean flow shear generated after separation but for the case of turbulent boundary layer is insensitive.

  • PDF

역압력구배 영향을 고려한 저레이놀즈수 k-ε 모형의 소산율 방정식 수정 (Modification of Dissipation Rate Equation of Low Reynolds Number k-ε Model Accounting for Adverse Pressure Gradient Effect)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1399-1409
    • /
    • 1999
  • It is known that previous models are unsatisfactory in predicting adverse pressure gradient turbulent flows. In the present paper, a revised low Reynolds number $k-{\varepsilon}$ model is proposed. In this model, a newly developed term is added lo the dissipation rate equation. In order to reflect appropriate effects for an adverse pressure gradient. The added tenn is derived by considering the distribution of mean velocity and turbulent properties in the turbulent flow with, adverse pressure gradient. The new $k-{\varepsilon}$ model was applied to calculations of flat plate flow with adverse pressure gradient, conical diffuser flow and backward facing step flow. It was found that the three numerical results showed better agreement than other models compared with DNS results and experimental ones.

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Hasebe, Hiroshi;Nomura, Takashi
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.21-47
    • /
    • 2009
  • The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

환형연소기의 스월난류유동장에 대한 Large Eddy Simulation (Large Eddy Simulation of Swirling Turbulent Flows in a Annular Combustor)

  • 김종찬;성홍계;차봉준;양계병
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제30회 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2008
  • 스월 연소기의 비반응 난류 유동특성을 파악하기 위하여 3차원 Large Eddy Simulation(LES)을 수행하였다. 연소기는 GEAE LM6000 연소기를 이용하였으며, 실제 실험 결과에 따른 인젝터 유입 형상을 적용하였다. 주 흐름 부분에서 강한 vortex breakdown, 중심 재순환영역, 모서리 재순환영역, 축방향으로 전진하는 스월링 형상, 주기적으로 나타나는 난류 구조를 관찰하였다. 계산된 결과는 실제 실험결과와 선행연구자들의 LES 계산결과와 비교하여 잘 맞음을 확인하였다.

  • PDF

Large eddy simulation of turbulent boundary layer effects on stratified fluids in a rotating conical container

  • Lee, Sang-Ki;Bae, Jun-Hong;Hwang, Eyl-Seon;M. Sadasivam
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.75-80
    • /
    • 2000
  • We revisit the arrested Ekman boundary layer problem, using a fully non-linear numerical model with the subgrid dissipation modeled by the large eddy simulation method (LES). The main objective of this study is to find out whether the dynamic balance of the arrested Ekman boundary layer explained by MacCready and Rhines (1991) is valid for high Reynolds number. The model solution indicates that for high Reynolds number and low Richardson number flows, the density anomaly diffusion by near-wall turbulent action may become intense enough to homogenize completely the density structure within the boundary layer, in the direction perpendicular to the sloping wall. Then the buoyancy effect becomes negligible allowing a near-equilibrium Ekman boundary layer flow to persist for a long period.

  • PDF

Quantification of Volumetric In-Cylinder Flow of SI Engine Using 3-D Laser Doppler Velocimetry ( II )

  • Yoo, Seoung-Chool
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.47-54
    • /
    • 2007
  • Simultaneous 3-D LDV measurements of the in-cylinder flows of three different engine setups were summarized for the quantification of the flow characteristics in each vertical or horizontal plane, and in entire cylinder volume. The ensemble averaged-velocity, tumble and swirl motions, and turbulent kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each engine setup). The better spatial resolution of the 3-D LDV allows measurements of the instantaneous flow structures, yielding more valuable information about the smaller flow structures and the cycle-to-cycle variation of these flow patterns. Tumble and swirl ratios, and turbulent kinetic energy were quantified as planar and volumetric quantities. The measurements and calculation results were animated for the visualization of the flow, and hence ease to analysis.

난류 박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류 열전달 모형의 개발 (A low-Reynolds-number 4-equation heat transfer model for turbulent separated and reattaching flows)

  • 이광훈;성형진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.37-42
    • /
    • 1995
  • In the present study, an improved version of 4-equation low-Reynolds-number 4-equation model is proposed. The equations of the temperature variance ($k_{\theta}$) and its dissipation rate(${\varepsilon}_{\theta}$) are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissipation rate(${\varepsilon}$). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

  • PDF

2차원 채널에서 사각봉을 이용한 난류열전달 증가에 대한 수치해석 (AUGMENTATION OF TURBULENT HEAT TRANSFER IN A CHANNEL USING A SQUARE ROD)

  • 김희영;박태선
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.118-124
    • /
    • 2008
  • The characteristics of heat transfer in a two-dimensional channel obstructed by a square rod is investigated by a turbulence model. The computation is made for the six cases of different rod positions between channel walls. To analyze the wall heat transfer, the heat flux of channel walls is set as a constant value and the $k-{\epsilon}-f_{\mu}$ model is employed. Downstream the square rod, the flow recirculation region appear and they are varied by the rod position. The enhancement of the turbulent heat transfer to the wall is induced by the flow instability using a square rod. The averaged heat transfer rate is maximized at a specific rod position. Finally, the effects of square rod on unsteady flows are scrutinized with the frequency analysis.

  • PDF

높은 레이놀즈수에서의 난류 장애물유동의 Large-Eddy-Simulation (Large-Eddy Simulation of a Turbulent Obstacle Flow at a High Reynolds Number)

  • 양경수
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1866-1872
    • /
    • 1994
  • Turbulent flow in a channel with a square rib periodically mounted on one wall is studied by large-eddy simulation(LES). An efficient 3D Navier-Stokes solver has been written for this geometry using a fractional step method and a multi-grid technique. The Reynolds number considered is 82, 000 based on the mean velocity above the obstacle height. Near-wall turbulence is approximated by a wall-layer model based on the turbulence intensity at the grid point nearest a solid wall. The results show a good qualitative agreement with experiments currently available for a single rib, indicating that LES can be a useful tool in simulating complex turbulent flows.

DNS of Vortex Cavitations in Turbulent Separated Layer

  • Kajishima, Takeo;Ohta, Takashi;Sakai, Hiroki;Okabayashi, Kie
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.11-12
    • /
    • 2006
  • We conducted a direct numerical simulation (DNS) to establish database for the purpose of improvement of practical method which is applicable to cavitating turbulent flows. Cavitations caused by spanwise and streamwise vortices, which are typical features in high shear layer, is represented by a simple model and interaction between vortices and cavities is reproduced. The qualitative agreement between computation and experiment are reasonable. Cavities due to streamwise vortices in a shear layer seem to attenuate turbulent eddies.

  • PDF