• Title/Summary/Keyword: Tunneling device

Search Result 190, Processing Time 0.035 seconds

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Controlling Spin State of Magnetic Molecules by Oxygen Binding Studied Using Scanning Tunneling Microscopy

  • Lee, Soon-hyeong;Chang, Yun Hee;Kim, Howon;Kim, Kyung Min;Kim, Yong-Hyun;Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.145.1-145.1
    • /
    • 2016
  • Binding and unbinding between molecular oxygen and metallo-porphyrin is a key process for oxygen delivery in respiration. It can be also used to control spin state of magnetic metallo-porphyrin molecules. Controlling and sensing spin states of magnetic molecules in such reactions at the single molecule level is essential for spintronic molecular device applications. Here, we demonstrate that spin states of metallo-porphyrin on surfaces can be controlled over by binding and unbinding of oxygen molecule, and be sensed using scanning tunneling microscopy and spectroscopy. Kondo localized state of metallo-porphyrin showed significant modification by the binding of oxygen molecule, implying that the spin state was changed. Our density functional theory calculation results explain the observations with the hybridization of unpaired spins in d and ${\pi}^*$ orbitals of metallo-porphyrin and oxygen, respectively. Our study opens up ways to control molecular spin state and Kondo effect by means of molecular binding and unbinding reactions on surfaces.

  • PDF

Improvement in Memory Characteristics of Charge Trap Memory Capacitor with High-k Materials as Engineered Tunnel Dielectrics and Charge Trap Layer (엔지니어드된 터널 절연막과 전하트랩층에 고유전 물질을 적용한 전하 트랩형 메모리 캐패시터의 메모리 특성 개선)

  • Kim, Min-Soo;You, Hee-Wook;Park, Goon-Ho;Oh, Se-Man;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.408-409
    • /
    • 2009
  • The memory characteristics of charge trap memory capacitor with high-k materials were investigated. I-V characteristics of the fabricated device with band gap engineered tunneling gate stacks consisted of $SiO_2$, $ZrO_2$, $Al_2O_3$ dielectrics were evaluated and compared with the one consisted of $SiO_2$ tunneling dielectric. The memory capacitor including engineered tunneling dielectrics of ($Al_2O_3/ZrO_2/SiO_2$) shows the fastest PIE speed and long data retention time.

  • PDF

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

3-D Simulation of Thermal Multimorph Actuator based on MUMPs process

  • Klaitabtim, Don;Tuantranont, Adisorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1115-1117
    • /
    • 2005
  • This paper describes the three dimension model and simulation results of a thermal actuator based on polyMUMPs process, known as thermal multimorph actuator. The device has potential application in micro-transducers such as atomic force microscope (AFM) tip and scanning tunneling microscope (STM) tip. This device made of a multi-layer materials stack together with consisted of polysilicon, $SiO_2$ and gold. A mask layout design, three dimension model and simulation results are reported and discussed.

  • PDF

Electrical Characteristics of Tunneling Field-effect Transistors using Vertical Tunneling Operation Based on AlGaSb/InGaAs

  • Kim, Bo Gyeong;Kwon, Ra Hee;Seo, Jae Hwa;Yoon, Young Jun;Jang, Young In;Cho, Min Su;Lee, Jung-Hee;Cho, Seongjae;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2324-2332
    • /
    • 2017
  • This paper presents the electrical performances of novel AlGaSb/InGaAs heterojunction-based vertical-tunneling field-effect transistor (VTFET). The device performance was investigated in views of the on-state current ($I_{on}$), drain-induced barrier thinning (DIBT), and subthreshold swing (SS) as the gate length ($L_G$) was scaled down. The proposed TFET with a $L_G$ of 5 nm operated with an $I_{on}$ of $1.3mA/{\mu}m$, a DIBT of 40 mV/V, and an SS of 23 mV/dec at a drain voltage ($V_{DS}$) of 0.23 V. The proposed TFET provided approximately 25 times lower DIBT and 12 times smaller SS compared with the conventional $L_G$ of 5 nm TFET. The AlGaSb/InGaAs VTFET showed extremely high scalability and strong immunity against short-channel effects.

Fabrication and packaging of the vacuum magnetic field sensor (자장 세기 측정용 진공 센서의 제작 및 패키징)

  • Park, Heung-Woo;Park, Yun-Kwon;Lee, Duck-Jung;Kim, Chul-Ju;Park, Jung-Ho;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.292-303
    • /
    • 2001
  • This work reports the tunneling effects of the lateral field emitters. Tunneling effect is applicable to the VMFS(vacuum magnetic field sensors). VMFS uses the fact that the trajectory of the emitted electrons are curved by the magnetic field due to Lorentz force. Polysilicon was used as field emitters and anode materials. Thickness of the emitter and the anode were $2\;{\mu}m$, respectively. PSG(phospho-silicate-glass) was used as a sacrificial layer and it was etched by HF at a releasing step. Cantilevers were doped with $POCl_3(10^{20}cm^{-3})$. $2{\mu}m$-thick cantilevers were fabricated onto PSG($2{\mu}m$-thick). Sublimation drying method was used at releasing step to avoid stiction. Then, device was vacuum sealed. Device was fixed to a sodalime-glass #1 with silver paste and it was wire bonded. Glass #1 has a predefined hole and a sputtered silicon-film at backside. The front-side of the device was sealed with sodalime-glass #2 using the glass frit. After getter insertion via the hole, backside of the glass #1 was bonded electrostatically with the sodalime-glass #3 at $10^{-6}\;torr$. After sealing, getter was activated. Sealing was successful to operate the tunneling device. The packaged VMFS showed very small reduced emission current compared with the chamber test prior to sealing. The emission currents were changed when the magnetic field was induced. The sensitivity of the device was about 3%/T at about 1 Tesla magnetic field.

  • PDF

Characteristics of Erbium silicided n-type Schottky barrier tunnel transistors (Erbium 실리사이드를 이용하여 제작한 n-형 쇼트키장벽 관통트랜지스터의 전기적 특성)

  • Moongyu Jang;Kicheon Kang;Sunglyul Maeng;Wonju Cho;Lee, Seongjae;Park, Kyoungwan
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.779-782
    • /
    • 2003
  • The theoretical and experimental current-voltage characteristics of Erbium silicided n-type Schottky barrier tunneling transistors (SBTTs) are discussed. The theoretical drain current to drain voltage characteristics show good correspondence and the extracted Schottky barrier height is 0.24 eV. The experimentally manufactured n-type SBTTs with 60 nm gate lengths show typical transistor behaviors in drain current to drain voltage characteristics. The drain current on/off ratio is about 10$^{5}$ at low drain voltage regime in drain current to gate voltage characteristics.

  • PDF

Simulation Study on a Quasi Fermi Energy Movement in the Floating Body Region of FITET (Field-induced Inter-band Tunneling Effect Transistor)

  • Song, Seung-Hwan;Kim, Kyung-Rok;Kang, Sang-Woo;Kim, Jin-Ho;Kang, Kwon-Chil;Shin, Hyung-Cheol;Lee, Jong-Duk;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.679-682
    • /
    • 2005
  • Negative-differential conductance (NDC) characteristics as well as negative-differential trans-conductance (NDT) characteristics have been observed in the room temperature I-V characteristics of Field-induced Inter-band Tunneling Effect Transistors (FITETs). These characteristics have been explained with inter-band tunneling physics, from which, inter-band tunneling current flows when the energy bands of degenerately doped regions align, and it does not flow when they don't. FITET is an SOI device and the body region is not directly connected to the external terminal. Therefore, Fermi energy in the body region is determined by electrical coupling among four regions - gate, source, drain and substrate. So, a quasi Fermi energy of the majority carriers in the floating body region can be changed by external voltages, and this causes the energy band movements in the body region, which determine whether the energy bands between degenerately doped junctions aligns or not. This is a key point for an explanation of NDT and NDC characteristics. In this paper, a quasi Fermi energy movement in the floating body region of FITET was investigated by a device simulation. This result was applied for the description of relation between quasi Fermi energy in the body region and external gate bias voltage.

  • PDF