• Title/Summary/Keyword: Tunnel deformation

Search Result 462, Processing Time 0.024 seconds

Estimation of Strength and Deformation Modulus of the 3-D DFN System Using the Distinct Element Method (개별요소법을 이용한 삼차원 DFN 시스템의 강도 및 변형계수 추정)

  • Ryu, Seongjin;Um, Jeong-Gi;Park, Jinyong
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.15-28
    • /
    • 2020
  • In this study, a procedure was introduced to estimate strength and deformation modulus of the 3-D discrete fracture network(DFN) systems using the distinct element method(DEM). Fracture entities were treated as non-persistent square planes in the DFN systems. Systematically generated fictitious fractures having similar mechanical characteristics of intact rock were combined with non-persistent real fractures to create polyhedral blocks in the analysis domain. Strength and deformation modulus for 10 m cube domain of various deterministic and stochastic 3-D DFN systems were estimated using the DEM to explore the applicability of suggested method and to examine the effect of fracture geometry on strength and deformability of DFN systems. The suggested procedures were found to effective in estimating anisotropic strength and deformability of the 3-D DFN systems.

Effect of Deformation Zones on the State of In Situ Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden (스웨덴 방사성 폐기물 처분장 후보부지의 사례를 통해 살펴본 대규모 변형대가 암반의 초기응력에 미치는 영향)

  • Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.134-148
    • /
    • 2008
  • The state of in situ stress is an important factor in considering the suitability of a site as a geological repository for nuclear waste. In this study, three-dimensional distinct numerical analysis was conducted to investigate the effect of deformation zones on the state of stress in the Oskarshamn area, which is one of two candidate sites in Sweden. A discontinuum numerical model was constructed by explicitly representing the numerous deformation zones identified from site investigation and far-field tectonic stress was applied in the constructed model. The numerical model successfully captured the variation of measured stress often observed in the rock mass containing large-scale fractures, which shows that numerical analysis can be an effective tool in improving the understanding of the state of stresses. Discrepancies between measured and modelled stress are attributed to the inconsistent quality of measured stress, uncertainty in geological geometry. and input data for fractures.

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

The Prediction of Ground Condition ahead of the Tunnel Face using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 터널막장 전방 지반 상태의 예측)

  • You Kwang-Ho;Song Han-Chan;Kim Ki-Sun;Lee Dae-Hyuck;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.440-449
    • /
    • 2004
  • Rock mass includes natural discontinuities such as joints and faults during its formation. Discontinuities are also referred as planes of weakness because of their weak mechanical characteristics. In the design of underground structures, it is necessary to consider the properties of discontinuities to insure the stability. During the excavation of a tunnel, these discontinuities have to be identified as early as possible so that proper change in excavation method or support design can be made accordingly. The excavation of the tunnel in a stable rock mass causes a 3-dimensional arching effect around the excavation face. It was revealed by previous studies that the existence of a weak zone or a fault zone ahead of tunnel foe induces a typical displacement tendency of convergence. For better understanding of the meaning of influence/trend lines of various displacement components, three-dimensional numerical analyses were conducted while varying deformation moduli, thicknesses and orientations of discontinuities. Numerical results showed that the changes in influence/trend lines of various displacement components were very similar to those by measurements. The discrepancies from the expected values were dependent on the physical properties, thicknesses and orientations of discontinuities.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sup;Park, Tae-Soon;Lee, Jong-Sun;Lee, Jun-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

Investigation for the deformation behavior of the precast arch structure in the open-cut tunnel (개착식 터널 프리캐스트 아치 구조물의 변형 거동 연구)

  • Kim, Hak Joon;Lee, Gyu-Phil;Lim, Chul Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.93-113
    • /
    • 2019
  • The behavior of the 3 hinged precast arch structure was investigated by comparing field measurements with numerical analyses performed for precast lining arch structures, which are widely used for the open-cut tunnel. According to the field measurements, the maximum vertical displacement occurred at the crown with upward displacements during the backfilling up to the crown of the arch and downward displacements at the backfill height above the crown. The final crown displacement was 19 mm upward from the original position. The horizontal displacement at the sidewall, which had a maximum horizontal displacement, occurred inward of the arch when compacting the backfill up to the crown and returned to the original position after completing the backfill construction. According to the analysis of displacement measurements, economical design is expected to be possible for precast arch structures compared to rigid concrete structures due to ground-structure interactions. Duncan model gave good results for the estimation of displacements and deformed shape of the tunnel according to the numerical analyses comparing with field measurements. The earth pressure coefficients calculated from the numerical analyses were 0.4 and 0.7 for the left and the right side of the tunnel respectively, which are agreed well with the eccentric load acting on the tunnel due to topographical condition and actual field measurements.

Influence of the Existing Cavern on the Stability of Adjacent Tunnel Excavation by Small-Scale Model Tests (축소모형시험을 통한 공동이 근접터널 굴착에 미치는 영향평가)

  • Jung, Minchul;Hwang, Jungsoon;Kim, Jongseob;Kim, Seungwook;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.12
    • /
    • pp.117-128
    • /
    • 2014
  • Generally, when constructing a tunnel close to existing structures, the tunnel must be built at a constant distance from the structures that is more than width of tunnel to minimize the impact of interference between an existing structures and new tunnel. Spacing of these closed tunnels should be designed considering soil state, size of tunnel and reinforcement method. Particularly when the ground is soft, a care should be taken with the tunnel plans because the closer the tunnel is to the existing structures, the greater the deformation becomes. As methods of reviewing the effect of cavities on the stability of a tunnel, field measurement, numerical analysis and scaled model test can be considered. In the methods, the scaled model test can reproduce the engineering characteristics of a rock in a field condition and the shape of structures using the scale factor even not all conditions cannot be considered. In this study, when construction of a tunnel close to existing structures, the method and considering factors of the scaled model test were studied to predict the actual tunnel behavior in planning stage. Furthermore, model test results were compared with the numerical analysis results for verifying the proposed model test procedure. Also, practical results were derived to verify the stability of a tunnel vis-a-vis cavities through the scaled model test, which assumed spacing distances of 0.25 D, 0.50 D, and 1.00 D between the cavities and tunnel as well as the network state distribution. The spacing distances of 1.0 D is evaluated as the critical distance by the results of model test and numerical analysis.

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo;Zo, Jin-feng;An, Wei
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.553-564
    • /
    • 2020
  • In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

A Study on Determination for Location of Localizer Antenna under Area Restrictive Conditions at Domestic P-Airport (국내 P공항의 부지 제한조건을 고려한 로컬라이저의 최적위치 선정에 관한 연구)

  • Cho, Hwan-Kee;Kim, Jong-Bum;Song, Byung-Heum
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.7-14
    • /
    • 2015
  • This paper deals with an optimal determination process for the built-in location of localizer under restrictive siting area conditions of a domestic P-airport. Aerodynamic forces and moments acting on the localizer structure can be used a reference to find the safe distance from jet blast and the position at which the reasonable structural loading is applied. Wind tunnel experiment is conducted to measure aerodynamic loadings. The finite element analysis for structural deformation is employed to get the information of structural failure. A new localizer's position is determined by considering aerodynamic loading, structural strength and thermal loading due to jet blast. Deflector effect was also investigated in this study. In conclusion, the location of localizer can be placed at shorter than the current position and greatly decreased if the deflector is applied at the front of localizer.