DOI QR코드

DOI QR Code

Solution for a circular tunnel in strain-softening rock with seepage forces

  • Wei, Luo (Department of Civil Engineering, East China Jiaotong University) ;
  • Zo, Jin-feng (Department of Civil Engineering, Central South University) ;
  • An, Wei (Department of Civil Engineering, Central South University)
  • Received : 2020.02.07
  • Accepted : 2020.08.19
  • Published : 2020.09.25

Abstract

In this study, a simple numerical approach for a circular tunnel opening in strain-softening surrounding rock is proposed considering out-of-plane stress and seepage force based on Biot's effective stress principle. The plastic region of strain-softening surrounding rock was divided into a finite number of concentric rings, of which the thickness was determined by the internal equilibrium equation. The increments of stress and strain for each ring, starting from the elastic-plastic interface, were obtained by successively incorporating the effect of out-of-plane stress and Biot's effective stress principle. The initial value of the outmost ring was determined using equilibrium and compatibility equations. Based on the Mohr-Coulomb (M-C) and generalized Hoek-Brown (H-B) failure criteria, the stress-increment approach for solving stress, displacement, and plastic radius was improved by considering the effects of Biot's effective stress principle and the nonlinear degradation of strength and deformation parameters in plastic zone incorporating out-of-plane stress. The correctness of the proposed approach is validated by numerical simulation.

Keywords

References

  1. Aalianvari, A. (2017), "Combination of engineering geological data and numerical modeling results to classify the tunnel route based on the groundwater seepage", Geomech. Eng., 13(4), 671-683. https://doi.org/10.12989/gae.2017.13.4.671.
  2. Aksoy, C.O., Aksoy, G.G., Guney, A., Ozacar, V. and Yaman, H.E. (2020), "Influence of time-dependency on elastic rock properties under constant load and its effect on tunnel stability", Geomech. Eng., 20(1), 1-7. https://doi.org/10.12989/gae.2020.20.1.001.
  3. Alonso, E., Alejano, L.R., Varas, F., Fdez-Manin, G. and Carranza-Torres, C. (2003), "Ground response curves for rock masses exhibiting strain-softening behaviour", Int. J. Numer. Anal. Meth. Geomech., 27(13), 1153-1185. https://doi.org/10.1002/nag.315.
  4. Atkinson, J.H. and Potts, D.M. (1977), "Stability of a shallow circular tunnel in cohesionless soil", Geotechnique, 27(2), 203-215. https://doi.org/10.1680/geot.1977.27.2.203.
  5. Biot, M.A. and Wills, D.G. (1957), "The elastic coefficients of the theory of consolidation", J. Appl. Mech., 24, 594-601. https://doi.org/10.1115/1.4011606
  6. Bobet, A. (2001), "Analytical solutions for shallow tunnels in saturated ground", J. Eng. Mech., 127(12), 1258-1266. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:12(1258).
  7. Brown, E.T., Bray, J.W., Ladanyi, B. and Hoek, E. (1983), "Ground response curves for rock tunnels", J. Geotech. Eng., 109(1), 15-39. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:1(15).
  8. Bui, T.A., Wong, H., Deleruyelle, F., Dufour, N., Leo, C. and Sun, D.A. (2014), "Analytical modeling of a deep tunnel inside a poro-viscoplastic rock mass accounting for different stages of its life cycle", Comput. Geotech., 58(5), 88-100. https://doi.org/10.1016/j.compgeo.2013.11.004.
  9. Carranza-Torres, C. (2004), "Elasto-plastic solution of tunnel problems using the generalized form of the Hoek-Brown failure criterion", Int. J. Rock Mech. Min. Sci., 41(3), 480-481. https://doi.org/10.1016/j.ijrmms.2004.03.111.
  10. Chen, G.H. and Zou, J.F. (2020), "Analysis of tunnel face stability with non-linear failure criterion under the pore water pressure", Eur. J. Environ. Civ. Eng., 1-13. https://doi.org/10.1080/19648189.2020.1777905.
  11. Chen, G.H., Zou, J.F. and Pan, Q.J. (2020), "Earthquake-induced slope displacements in heterogeneous soils with tensile strength cut-off", Comput. Geotech., 124, 103637. https://doi.org/10.1016/j.compgeo.2020.103637.
  12. Cosenza, P., Ghoreychi, M., De Marsily, G., Vasseur, G. and Violette, S. (2002), "Theoretical prediction of poroelastic properties of argillaceous", Water Resour. Res., 38(10), 25-1. https://doi.org/10.1029/2001WR001201.
  13. Detournay, E. and Cheng, A.H.D. (1993), Fundamentals of Poroelasticity, in Analysis and Design Methods, Pergamon Press.
  14. Farhadian, H., Hassani, A.N. and Katibeh, H. (2017), "Groundwater inflow assessment to Karaj Water Conveyance tunnel, northern Iran", KSCE J. Civ. Eng., 21(6), 2429-2438. https://doi.org/10.1007/s12205-016-0995-2.
  15. Golpasand, M.R., Ngoc, A.D., Daniel, D. and Mohammad-Reza, N. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.
  16. Guan, Z., Jiang, Y., Tanabasi, Y. and Huang, H. (2007), "Reinforcement mechanics of passive bolts in conventional tunnelling", Int. J. Rock Mech. Min. Sci., 44(4), 625-636. https://doi.org/10.1016/j.ijrmms.2006.10.003.
  17. Harr, M.E. (1962), Groundwater and Seepage, McGraw-Hill, New York, U.S.A.
  18. Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek- Brown failure criterion-2002 edition", Procedings of the North American Rock Mechanics Society Meeting, Toronto, Canada, July.
  19. Jeffery, G.B. (1921), "Plane stress and plane strain in bipolar co-ordinates", Phil. Trans. Royal Soc. London Ser. A, 221(582-593), 265-293. https://doi.org/10.1098/rsta.1921.0009.
  20. Lee, Y.K. and Pietruszczak, S. (2008), "A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass", Tunn. Undergr. Sp. Technol., 23(5), 588-599. https://doi.org/10.1016/j.tust.2007.11.002.
  21. Lei, S. (1999), "An analytical solution for steady flow into a tunnel", Ground Water, 37(1), 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00 953.
  22. Li, W. and Zhang, C. (2020), "Face stability analysis for a shield tunnel in anisotropic sands", Int. J. Geomech., 20(5), 04020043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001666.
  23. Mindlin, R.D. (1940), "Stress distribution around a tunnel", T. Amer. Soc. Civ. Eng., 195(1), 1117-1140. https://doi.org/10.1061/TACEAT.0005268
  24. Ogawa, T. and Lo, K.Y. (1987), "Effects of dilatancy and yield criteria on displacements around tunnels", Can. Geotech. J., 24(1), 100-113. https://doi.org/10.1139/t87-009.
  25. Park, K.H., Tontavanich, B. and Lee, J.G. (2008), "A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses", Tunn. Undergr. Sp. Technol., 23(2), 151-159. https://doi.org/10.1016/j.tust.2007.03.002.
  26. Pinto, F. and Whittle, A.J. (2013), "Ground movements due to shallow tunnels in soft ground. I: Analytical solutions", J. Geotech. Geoenviron. Eng., 140(4), 04013040. https://doi.org/10.1061/(ASCE)GT.1943-5606. 0000948.
  27. Qian, Z.H., Zou, J.F., Tian, J. and Pan, Q.J. (2020), "Estimations of active and passive earth thrusts of non-homogeneous frictional soils using a discretisation technique", Comput. Geotech., 119(3), 103366. https://doi.org/10.1016/j.compgeo.2019.103366.
  28. Rezaei Amir, H., Mojtaba, S., Mohammad, R. and Baghban, G. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
  29. Schleiss, A. (1986), ''Design of previous pressure tunnels", Int. Water Power Dam Construct., 38(5), 21-26.
  30. Wang, S.L., Wu, Z., Guo M.W. and Ge, X.R. (2012), "Theoretical solutions of a circular tunnel with the influence of out-of-plane stress in elastic-brittle-plastic rock", Tunn. Undergr. Sp. Technol., 30(4), 155-168. https://doi.org/10.1016/j.tust.2012.02.016.
  31. Xiao, Y. and Liu, H. (2017), "Elastoplastic constitutive model for rockfill materials considering particle breakage", Int. J. Geomech., 17(1), 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
  32. Xiao, Y., Chen, H., Stuedlein, A.W., Evans, T.M., Chu, J., Cheng, L., Jiang, N., Lin, H., Liu, H. and Aboel-Naga, H.M. (2020), "Restraint of particle breakage by biotreatment method", J. Geotech. Geoenviron. Eng., 146. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
  33. Xiao, Y., Meng, M., Daouadjie, A., Chen, Q., Wu, Z. and Jiang, X. (2020), "Effect of particle size on crushing and deformation behaviors of rockfill materials", Geosci. Front., 11(2), 375-388. https://doi.org/10.1016/j.gsf.2018.10.010.
  34. Xiao, Y., Sun, Y., Yin, F., Liu, H. and Xiang, J. (2017), "Constitutive modeling for transparent granular soils", Int. J. Geomech., 17(7), 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
  35. Zhang, C., Han, K. and Zhang, D. (2015), "Face stability analysis of shallow circular tunnels in cohesive-frictional soils", Tunn. Undergr. Sp. Technol., 50, 345-357. https://doi.org/10.1016/j.tust.2015.08.007.
  36. Zhang, C., Li, W., Zhu, W. and Tan, Z. (2020), "Face stability analysis of a shallow horseshoe-shaped shield tunnel in clay with a linearly increasing shear strength with depth", Tunn. Undergr. Sp. Technol., 97, 103291. https://doi.org/10.1016/j.tust.2020.103291.
  37. Zou, J.F. and Zuo, S.Q. (2017), "Similarity solution for the synchronous grouting of shield tunnel under the vertical nonaxisymmetric displacement boundary condition", Adv. Appl. Math. Mech., 9(1), 205-232. https://doi.org/10.4208/aamm.2016.m1479.
  38. Zou, J.F., Sheng, Y.M., Xia, M.Y. and Wang, F. (2020), "A novel numerical-iterative-approach for strain-softening surrounding rock incorporating rockbolts effectiveness and hydraulic-mechanical coupling based on Three-Dimensional Hoek-Brown strength criterion", Tunn. Undergr. Sp. Technol., 101(7), 103358. https://doi.org/10.1016/j.tust.2020.103358.
  39. Zou, J.F., Wei A. and Li, L. (2020), "Analytical solution for steady seepage and groundwater inflow into an underwater tunnel", Geomech. Eng., 20(3), 267-273. https://doi.org/10.12989/gae.2020.20.3.267.