스웨덴 방사성 폐기물 처분장 후보부지의 사례를 통해 살펴본 대규모 변형대가 암반의 초기응력에 미치는 영향

Effect of Deformation Zones on the State of In Situ Stress at a Candidate Site of Geological Repository of Nuclear Waste in Sweden

  • 민기복 (애들레이드 대학교 토목환경자원공학부)
  • Min, Ki-Bok (School of Civil, Environmental and Mining Engineering, University of Adelaide)
  • 발행 : 2008.04.30

초록

암반의 초기응력 상태는 방사성 폐기물 지층 처분장의 적합성을 판단하는데 중요한 요소이다. 본 연구에서는 3차원 개별요소법을 이용하여 스웨덴 방사성 폐기물 처분장 후보지 중 하나인 오스카샴 지역에서 대규모 변형대가 초기응력에 미치는 영향을 살펴보았다. 수치해석에서는 부지조사 과정에서 확인된 변형대를 모델에 포함시켰으며 원거리 지각응력을 경계조건으로 사용하였다. 현지 암반에서 관찰되는 초기응력값의 변화 양상이 수치해석에서도 재현이 됨으로써 수치해석이 암반의 초기응력상태를 이해하는데 유용하게 쓰일 수 있음을 확인하였다. 수치해석을 통한 예측값과 초기응력 측정값과의 차이는 측정된 자료의 양호한 정도, 지질모델 및 변형대의 물성치의 불확실성 등에 기인하는 것으로 생각된다.

The state of in situ stress is an important factor in considering the suitability of a site as a geological repository for nuclear waste. In this study, three-dimensional distinct numerical analysis was conducted to investigate the effect of deformation zones on the state of stress in the Oskarshamn area, which is one of two candidate sites in Sweden. A discontinuum numerical model was constructed by explicitly representing the numerous deformation zones identified from site investigation and far-field tectonic stress was applied in the constructed model. The numerical model successfully captured the variation of measured stress often observed in the rock mass containing large-scale fractures, which shows that numerical analysis can be an effective tool in improving the understanding of the state of stresses. Discrepancies between measured and modelled stress are attributed to the inconsistent quality of measured stress, uncertainty in geological geometry. and input data for fractures.

키워드

참고문헌

  1. Amadei, B. and O. Stephansson, 1997, Rock stress and its measurement, Chapman and Hall, London, 490p
  2. Bandis, S.C., A.C. Lumsden and N.R. Barton, 1983, Fundamentals of rock joint deformation, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 20(6), 249-268 https://doi.org/10.1016/0148-9062(83)90595-8
  3. Brady, B.H.G., J.V. Lemos and P.A. Cundall, 1986, Stress measurement schemes for jointed and fractured rock, In: Stephansson O. (ed), Rock stress and rock stress measurement, Lulea, Sweden, 167-176
  4. Fairhurst, C., 2003, Stress estimation in rock: a brief history and review, Int. J. Rock Mech. Min. Sci. 40 (7-8), 957-973 https://doi.org/10.1016/j.ijrmms.2003.07.002
  5. Hakala, M., J.A. Hudson and R. Christiansson, 2003, Quality control of overcoring stress measurement data, Int. J. Rock Mech. Min. Sci. 40(7-8), 1141-1159 https://doi.org/10.1016/j.ijrmms.2003.07.005
  6. Hakami, E., H. Hakami and R. Christiansson, 2006, Depicting a plausible in situ stress distribution by numerical analysis - examples from two candidate sites in Sweden, In: Lu, Li, Kjorholt & Dahle (eds), In situ Rock Stress, Trondheim, Norway, 473-481
  7. Hakami, E., H. Hakami and J. Cosgrove, 2002, Strategy for a Rock Mechanics Site Descriptive Model-Development and testing of an approach to modelling the state of stress, Svensk Karnbranslehantering AB, SKB R-02-03
  8. Hart, R., 2003, Enhancing rock stress understanding through numerical analysis Int. J. Rock Mech. Min. Sci. 40(7-8),1089-1097 https://doi.org/10.1016/S1365-1609(03)00116-3
  9. Homand, F., M. Souley, P. Gaviglio and I. Mamane, 1997, Modelling natural stresses in the Arc Syncline and comparison with in situ measurements, Int. J. Rock Mech. Min. Sci. 34(7), 1091-1107 https://doi.org/10.1016/S0148-9062(96)00064-2
  10. Homberg, C., J.C. Hu, J. Angelier, F. Bergerat and O. lacombe, 1997, Characterization of stress perturbations near major fault zones: insights from 2-D distinct-element numerical modeling and field studies (Jura mountains), J. Structural Geology, 19(5), 703-718 https://doi.org/10.1016/S0191-8141(96)00104-6
  11. Hudson, J.A. and F.H. Cornet, 2003, Special issue on rock stress estimation, Int. J. Rock Mech. Min. Sci. 40(7-8), 955 https://doi.org/10.1016/j.ijrmms.2003.08.001
  12. Itasca Consulting Group Inc., 2003, Three Dimensional Distinct Element Code - User's Guide, Minneapolis, Minnesota, USA
  13. Martin, C.D. and N.A. Chandler, 1993, Stress heterogeneity and Geological structures, Int. J. Rock Mech. Min. Sci. 30(7), 993-999 https://doi.org/10.1016/0148-9062(93)90059-M
  14. Min, K.B., C.I. Lee and H.M. Choi, 2003, An experimental and numerical study of the in-situ stress measurement on transversely isotropic rock by overcoring method, In: Sugawara K et al (eds), 3rd International Symposium on Rock Stress - RS Kumamoto '03, Kumamoto, 189-195
  15. Pollard, D.D. and P. Segall, 1987, Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, In: Atkinson B.K. (editor), Fracture mechanics of rock, Academic Press Inc, London, 277-349
  16. SKB, 2004, Preliminary site description, Simpevarp area - version 1.1, Svensk Karnbranslehantering AB, SKB R-04-25
  17. SKB, 2006, Preliminary Site description. Laxemar area - version 1.2, Svensk Karnbranslehantering AB, SKB R-06-10
  18. SKB, 2007, RD&D Programme 2007, Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, Svensk Karnbranslehantering AB, SKB TR-07-12
  19. SKB, 2007, Forsmark site investigation, Programme for long-term observations of geosphere and biosphere after completed site investigations, Svensk Karnbranslehantering AB, SKB R-07-34
  20. Su, S and O. Stephansson, 1999, Effect of a fault on in situ stresses studied by the distinct element method, Int. J. Rock Mech. Min. Sci. 36(8), 1051-1056 https://doi.org/10.1016/S1365-1609(99)00119-7