• Title/Summary/Keyword: Tunnel Environment

Search Result 669, Processing Time 0.036 seconds

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.

Prediction of Trajectories of Particles Generated Underneath a Subway Train Running in An Underground Tunnel (지하터널에서 주행하는 전동차의 하부에서 발생한 입자의 이동경로 예측)

  • Lee, Kyung-Ran;Kim, Won-Geun;Yook, Se-Jin;Woo, Sang-Hee;Kim, Jong Bum;Bae, Gwi-Nam;Park, Hyung-Koo;Yoon, HwaHyeon
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • In this study, the flow around a subway train running in an underground tunnel was numerically estimated. For the validation of the numerical results, the airflow velocity at a point underneath a subway train was measured using an ultrasonic anemometer. Then, the trajectories of particles generated at the contact points between the wheels and rails were numerically predicted. By considering the airflow velocity and particle trajectories, the space underneath the T-Car (trailer car) was expected to be appropriate for the room for the installation of a dust-removal system.

서울시 지하철구간내 지하수위강하에 따른 지하공간 환경오염 감시의 필요성 및 대책

  • 이기철;김윤영;이주영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.167-172
    • /
    • 2002
  • Seoul subway system has been constructed to solve traffic difficulties of Seoul metropolitan, and now is the major public transportation. However, the more line has added in the system the deeper the bottom of the tunnel base. And a huge amount of groundwater along the line has seeping into the tunnel. Several subway stations has pumping system to extract the groundwater to the outside and consequently, groundwater table along the line has declined gradually. Groundwater table has dropped about 40 meters at some areas, There was some study for the proper usage of the abstracted groundwater and the project to use the groundwater has launched already by the local government. However. more serious problem is expected on quality degradation of soil and groundwater as the decline of groundwater table along the subway line. This study suggests that the detailed groundwater environmental study should be made as soon as possible for this. If there is any pollution leaking at the surface area of the groundwater depression, the pollution will be seep into the subway tunnel in some day even though the time will be different with the soil material and hydraulic characteristics of the aquifer. And the polluted area of the soil and groundwater would be enlarged along the pathway The study on possibility of the soil subsidence and reducing surface water flow in small creek were also needed. This study suggest one of the counter measurement that restoring the declined groundwater table after groundwater environmental study

  • PDF

Aerodynamic Resistance and Eddy Diffusivity above the Plug Stand under Artificial Light (인공광하에서 공정묘 개체군상의 공기역학적 저항 및 확산계수)

  • 김용현;고재풍수
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 1996
  • Experiment was performed in a newly developed wind tunnel with light system to determine the aerodynamic resistance and eddy diffusivity above the plug stand under artificial light. Maximum air temperature appeared near the top of the plug stand under artificial light. Since Richardson number was ranged from -0.07 to +0.01, the atmosphere above the plug stand in wind tunnel was in an unstable or near- neutral stability state. The average aerodynamic resistance at rear region of plug stand was 25 % higher than that at middle region. Eddy diffusivity($K_{M}$) linearly increased with the increasing air current speed. $K_{M}$ at air current speed of 0.9 m.$s^{-1}$ was about two times as many as that at air current speed of 0.3 m.$s^{-1}$. And average $K_{M}$ at the rear region was 15% lower than that at the middle region. These results indicated that the diffusion of heat and mass along the direction of air current inside the plug stand was different. It might cause the lack of uniformity in the growth and quality of plug seedlings. The wind tunnel developed in this study would be useful to investigate the effects of air current speed on microclimates and the growth of plug seedlings under artificial light in a semi- closed ecosystem.

  • PDF

BARAM: VIRTUAL WIND-TUNNEL SYSTEM FOR CFD SIMULATION (BARAM: 전산유체 해석을 위한 가상풍동 시스템)

  • Kim, Min Ah;Lee, Joong-Youn;Gu, Gibeom;Her, Young-Ju;Lee, Sehoon;Park, Soo Hyung;Kim, Kyu Hong;Cho, Kumwon
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.28-35
    • /
    • 2015
  • BARAM system that means 'wind' in Korean has been established as a virtual wind tunnel system for aircraft design. Its aim is to provide researchers with easy-to-use, production-level environment for all stages of CFD simulation. To cope with this goal an integrated environment with a set of CFD solvers is developed and coupled with an highly-efficient visualization software. BARAM has three improvements comparing with previous CFD simulation environments. First, it provides a new automatic mesh generation method for structured and unstructured grid. Second, it also provides real-time visualization for massive CFD data set. Third, it includes more high-fidelity CFD solvers than commercial solvers.

Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model (비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발)

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

Wind Flow over Hilly Terrain (언덕지형을 지나는 유동에 관한 연구)

  • 임희창;김현구;이정묵;경남호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF

Multi-objective optimization of submerged floating tunnel route considering structural safety and total travel time

  • Eun Hak Lee;Gyu-Jin Kim
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.323-334
    • /
    • 2023
  • The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.

A Comparison of Tunnel Lighting Environment according Road Tunnel Cross section Shape (단면 형태에 따른 터널의 조명환경 비교)

  • Kim, Sung-Sik;Yi, Chin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.181-184
    • /
    • 2005
  • 본 논문에서는 말굽형과 장방형 터널의 기본부의 노면과 벽면의 조도를 Lightscape를 사용하여 계산하였으며, 계산된 결과를 분석하여 보면 노면의 평균조도와 평균균제도는 두 가지 터널 사이에 큰 차이가 없었으며, 벽면조도는 노면에서 높아질수록 두 가지 터널에서 차이가 커지는 것으로 나타났다.

  • PDF