• Title/Summary/Keyword: Tunnel Concrete Lining

Search Result 273, Processing Time 0.028 seconds

Structural Analysis of Tunnel Structures by Two and Three Dimensional Modeling (2차원 및 3차원 모델링에 의한 터널구조물의 구조해석)

  • Kim, Rae-Hyun;Chung, Jae-Hoon;Yhim, Sung-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • Two dimensional Analysis has been applied to most of tunnel lining design in these days. Two dimensional analysis uses beam or curved beam element for finite element method. But because the behaviors of tunnel concrete lining structure is near to shell, it is required to model the tunnel lining as shell structure for safety design of tunnel lining structure. In this paper, two dimensional analysis by beam element and the three dimensional analysis by shell element of tunnel concrete lining are studied, in which 3 type of tunnel lining and lateral pressure factors are considered. As results of the study, three dimensional analyses of the behavior of tunnel concrete lining structure considering lateral pressure factor shows that the moment of three dimensional analysis is greater than those of two dimensional analysis. The results shows that three dimensional analysis is necessary for safety design of tunnel lining.

A Study for Concrete Crack Minimize Methods in Large Section Tunnel Lining (라이닝 시공특성을 고려한 대단면 4차로 터널 균열최소화 방안에 대한 연구)

  • Choo, Seok-Yeon;Lee, Jae-Sung;Koh, Sung-Yil;Kim, Sang-Whang;Ra, Kyong-Woong;Kim, Tae-Hyok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.621-628
    • /
    • 2005
  • The concrete lining in tunnel performs structural and nonstructural functions. The concrete lining works as a structural member for released load and residual water pressure in NATM tunnel system. Also concrete lining used for finishing the tunnel surface. The initial crack of concrete lining is reported because of difficulties in construction process, which concrete is injected into 30$\sim$40cm narrow gap between lining form and tunnel surface through 500${\times}$600mm small injection holes in the form. In this paper, we research a reason of initial crack occurrence by the case study of 4 lane wide span tunnel, and propose an improved method for crack minimization in construction process. We verify that the proposed method can give qualified concrete lining by carrying out the concrete injection model test and the numerical analysis of concrete flow.

  • PDF

Analysis of the Concrete Lining for Water Pressure Tunnel (수로 압력터널의 콘크리트Lining 해석)

  • 김승권;임정열;공천석;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.27-33
    • /
    • 2001
  • Objective of this study is to investigate the structural behavior of the concrete lining in water pressure tunnel. In many cases, the concrete lining of water pressure tunnel has not considered as a major structure comparing to the other structures, resulting in use of conservative analysis and design. For the detailed analysis of concrete lining of water pressure tunnel, factors such as rock pressure and water pressure have to be considered. In this study, analysis of concrete lining was performed by using beam element method, shell element method and solid element method. Analysis results showed that the tensile stress at crown of concrete lining is greatly affected by the stability of concrete lining and the tensile stress for the concrete lining has to be evaluated for the section where maximum moment is occurred.

  • PDF

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load

  • Jain, Priyanka;Chakraborty, Tanusree
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.399-406
    • /
    • 2018
  • The present study focuses on the performance of basalt fiber reinforced concrete (BFRC) lining in tunnel situated in sandstone rock when subjected to internal blast loading. The blast analysis of the lined tunnel is carried out using the three-dimensional (3-D) nonlinear finite element (FE) method. The stress-strain response of the sandstone rock is simulated using a crushable plasticity model which can simulate the brittle behavior of rock and that of BFRC lining is analyzed using a damaged plasticity model for concrete capturing damage response. The strain rate dependent material properties of BFRC are collected from the literature and that of rock are taken from the authors' previous work using split Hopkinson pressure bar (SHPB). The constitutive model performance is validated through the FE simulation of SHPB test and the comparison of simulation results with the experimental data. Further, blast loading in the tunnel is simulated for 10 kg and 50 kg Trinitrotoluene (TNT) charge weights using the equivalent pressure-time curves obtained through hydrocode simulations. The analysis results are studied for the stress and displacement response of rock and tunnel lining. Blast performance of BFRC lining is compared with that of plain concrete (PC) and steel fiber reinforced concrete (SFRC) lining materials. It is observed that the BFRC lining exhibits almost 65% lesser displacement as compared to PC and 30% lesser displacement as compared to SFRC tunnel linings.

Performance Estimation of Tunnel Lining Concrete Reinforced Steel Fiber (강섬유 보강 터널 라이닝 콘크리트의 성능 평가)

  • Jeon, Chan-Ki;Kim, Su-Man;Lee, Myung-Soo;Lee, Jong-Eun;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.579-582
    • /
    • 2005
  • Tunnel lining is the final support of a tunnel and reflects the results of the interaction between ground and support system. Recently it is very difficult to support and manage the tunnel because the cracks on tunnel lining cause problems in supporting and managing tunnels. Therefore the analysis of the cracks is quite strongly required. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, steel fiber reinforcement concrete(SFRC) has better crack properties than that of reinforced concrete. In this study, mechanical behaviour of a tunnel lining was examined by model tests. The model tests were carried out under various conditions taking different loading shapes, thicknesses and leakage of lining, and volume content of steel fiber. From these model test, the cracking load, the failure load, defection and cracking position and type were examined and the characteristics of deformation and failure for tunnel lining were estimated and researched.

  • PDF

A Method of Tunnel Analysis for Automatic Concrete Lining Construction Method (자동 터널라이닝 공법에 대한 해석기법)

  • 정한중;강석화;장성욱;이승욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.32-37
    • /
    • 1993
  • A method of tunnel analysis for a new type of tunnel construction method (ACLCM, Automatic Concrete Lining Construction Method) is presented here. ACLCM is an unique tunnel construction method which provides concrete lining at the end of shield machine by extruding concrete into the space between the excavated ground surface and the inner form (Automatic Concrete Lining Machine). Since behaviors of tunnel and the surrounding soils are greatly influenced by the construction method, existing tunnel design methods may not be applicable to the design of ACLCM tunnel. In this study, a method of ACLCM tunnel analysis is suggested to provide the prediction of behavior of ACLCM tunnel and surrounding soils as well as to check up the safety during the construction and after the completion of ACLCM tunnel

  • PDF

Durability Evaluation of Tunnel Lining Concrete Reinforced with Nylon Fiber (나일론섬유보강 터널 라이닝 콘크리트의 내구성능 평가)

  • Jeon, Joong-Kyu;You, Jin-O;Moon, Jae-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • Tunnel structures are widely used for transportations in mountains areas. To shorten the construction period and to cut down the construction expenditure, a construction technique that a tunnel excavation process and a tunnel lining process are simultaneously performed is often applied in the field. However, due to the vibration and impact caused by excavation process, cracking and deterioration of tunnel lining concrete could happen. This research experimentally investigated the effective role of the usages of blended cement and recently developed nylon fibers for tunnel lining concrete. It has been observed that both nylon fibers and blended cement improve the durability and physical properties of concrete.

Detection of the Cavity Behind the Tunnel Lining by Single Channel Seismic and GPR Method (GPR 및 단일채널 탄성파탐사에 의한 터널라이닝 배면공동 조사)

  • Shin, Sung-Ryul;Jo, Chul-Hyun;Shin, Chang-Soo;Yang, Seung-Jin;Jang, Won-Yil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.148-158
    • /
    • 1998
  • Determining the thickness if concrete lining and detecting of the cavity where is located behind tunnel lining plays an important role in the safety diagnosis of tunnel structure and the quality control. In this study, we made use of GPR and seismic method in order to find the cavity or flaw. Although GPR is very useful method in the concrete lining without rebar, it is difficult to detect the cavity in the reinforced concrete lining. We applied mini-seismic method to the reinforced concrete lining. The obtained seismic data was processed by means of seismic section in time domain and image section of power spectrum in frequency domain using Impact-Echo method as well. The proposed method can accurately show the location and depth of the cavity in the reinforced concrete lining.

  • PDF