• Title/Summary/Keyword: Tumorigenic

Search Result 126, Processing Time 0.024 seconds

Biology of Glioma Cancer Stem Cells

  • Park, Deric M.;Rich, Jeremy N.
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for In vitro and in vivo growth, a property intimately linked to the cell's differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the socalled glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.

Enhancement of Anti-tumorigenic Polysaccharide Production, Adhesion, and Branch Formation of Bifidobacterium bifidum BGN4 by Phytic Acid

  • Ku, Seock-Mo;You, Hyun-Ju;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.749-754
    • /
    • 2009
  • The polysaccharide (BB-pol) extracted from Bifidobacterium bifidum BGN4 showed growth inhibitory effects on several colon cancer cell lines such as HT-29 and HCT-116. To increase the yield of polysaccharide, B. bifidum BGN4 was cultured in various culture media with different compositions. When B. bifidum BGN4 was cultured in modified MRS broth containing phytic acid, the cells showed increased branch formation and enlarged morphology. The content of total carbohydrate and the ability of adhesion to intestinal epithelial cells were also increased by phytic acid. The polysaccharide obtained from the cells grown in the presence of phytic acid inhibited the proliferation of cancer cell lines such as HT-29 and MCF-7 cells but not normal colon cell line, FHC. Taken together, Bifidobacterium grown in the presence of phytic acid may confer enhanced beneficial function for the host.

JNK Regulation of Oncogenesis

  • Heasley, Lynn E.;Han, Sun-Young
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.167-173
    • /
    • 2006
  • The literature provides strong precedent for both pro-tumorigenic and tumor suppressor roles for the c-Jun N-terminal kinases (JNKs) in the setting of oncogenesis. Clearly, JNKs are activated by numerous oncogenes and growth factors and the literature documents a role for these MAP kinases in cell proliferation and transformation. By contrast, JNKs mediate signals from diverse stimuli that result in cell death or differentiation and a role for JNKs as tumor suppressors has emerged. This enigmatic nature of the JNKs in the setting of oncogenesis is considered herein. Further illumination of the complex and context-dependent functions of the JNKs in cancer cells is of obvious importance for the rational use of small molecule JNK inhibitors as therapeutics.

NF-κB in Cellular Senescence and Cancer Treatment

  • Jing, Hua;Lee, Soyoung
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.189-195
    • /
    • 2014
  • The NF-${\kappa}B$ pathway transcriptionally controls a large set of target genes that play important roles in cell survival, inflammation, and immune responses. While many studies showed anti-tumorigenic and pro-survival role of NF-${\kappa}B$ in cancer cells, recent findings postulate that NF-${\kappa}B$ participates in a senescence-associated cytokine response, thereby suggesting a tumor restraining role of NF-${\kappa}B$. In this review, we discuss implications of the NF-${\kappa}B$ signaling pathway in cancer. Particularly, we emphasize the connection of NF-${\kappa}B$ with cellular senescence as a response to chemotherapy, and furthermore, present examples how distinct oncogenic network contexts surrounding NF-${\kappa}B$ produce fundamentally different treatment outcomes in aggressive B-cell lymphomas as an example.

DDX53 Regulates Cancer Stem Cell-Like Properties by Binding to SOX-2

  • Kim, Youngmi;Yeon, Minjeong;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.322-330
    • /
    • 2017
  • This study investigated the role of cancer/testis antigen DDX53 in regulating cancer stem cell-like properties. DDX53 shows co-expression with CD133, a marker for cancer stem cells. DDX53 directly regulates the SOX-2 expression in anti-cancer drug-resistant $Malme3M^R$ cells. DDX53 and miR-200b were found to be involved in the regulation of tumor spheroid forming potential of Malme3M and $Malme3M^R$ cells. Furthermore, the self-renewal activity and the tumorigenic potential of $Malme3M^R$-CD133 (+) cells were also regulated by DDX53. A miR-200b inhibitor induced the direct regulation of SOX-2 by DDX53 We therefore, conclude that DDX53 may serve as an immunotherapeutic target for regulating cancer stem-like properties of melanomas.

The radioligands with VEGF121 for angiogenesis of tumor

  • Yim, Min Su;Ryu, Eun Kyoung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.106-114
    • /
    • 2018
  • Angiogenesis is the new blood vessel formation process and has known to a fundamental event of tumor growth and metastasis. Especially, vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the crucial regulators of angiogenesis in tumor. VEGF-A is one of the VEGF family and binds to endothelial cell specific VEGFR1 and VEGFR2, which are associated with tumor growth and tumor angiogenesis. $VEGF_{121}$ is more tumorigenic isomer of VEGF-A. Targeted VEGF or VEGFR molecular imaging has been widely used to enable diagnosis and monitoring of proliferation and development of angiogenic tumors. Therefore, in this review, we have focused on the radioligands with $VEGF_{121}$ for angiogenesis of tumor.

Cyclooxygenase Inhibitory Activity of Ginsenosides from Panax ginseng

  • Yoo, Hye-Hyun;Kang, Ki-Sung;Lee, Yang-Beom;Kim, Bak-Kwang;Park, Man-Ki;Park, Jeong-Hill
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.216.1-216.1
    • /
    • 2003
  • P. ginseng C.A. Meyer is one of the most widely used herbal medicine in Asia. It has been used for the treatment of many disorders. Its major constituent is known to be ginsenosides, and there are many documents about bioactivities of ginsenosides such as anti-oxidant, anti-tumorigenic, anti-fatigue, and anti-inflammatory activities. Some of these activities are supposed to have some correlation with inhibitory action of cyclooxygenase (COX). Ginsenosides from P. ginseng and sapogenins were evaluated for their inhibitory effects against both cyclooxygenase-1 and -2 (COX-1 and -2). Inhibitory activity was evaluated by measuring prostaglandin E$_2$ (PGE$_2$) production from arachidonic acid with an ELISA reader. (omitted)

  • PDF

In vitro mutagenicity and genotoxicity study of PAHs and nitro-PAHs using the bacterial revertant (Ames) test and alkaline single cell gel electrophorosis (Comet) assay

  • Kim, Soung-Ho;Oh, Seung-Min;Chung, Kyu-Hyuck
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.284.1-284.1
    • /
    • 2002
  • In previous studies, we demonstrated that ambient PM collected from urban site of Korea air could induce DNA damage, Various mutagens and carcinogens present in the urban air differ according to the source of the pollutants. Polycyclic aromatic hydrocarbons (PAHs) and their nitrated compound are produced in the combustion of fossil fuels as diesel emission exhausts. In recent, PAH and nitro-PAH have been identified in urban air particulate matter (PM). and some of them were found to be tumorigenic in experimental animals and humans. (omitted)

  • PDF

Therapeutic application of extracellular vesicles for various kidney diseases: a brief review

  • Lee, Sul A;Yoo, Tae Hyun
    • BMB Reports
    • /
    • v.55 no.1
    • /
    • pp.3-10
    • /
    • 2022
  • Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumorigenic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases.

Effect of Radiation Dosage Changes on the Cell Viability and the Apoptosis Induction on Normal and Tumorigenic Cells (방사선의 선량변화가 수종의 정상세포와 종양세포주의 세포활성도와 apoptosis 유발에 미치는 영향)

  • Park In-Woo;Lee Sam-Sun;Heo Min-Suk;Choi Soon-Chul
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.435-449
    • /
    • 1999
  • Purpose : The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. Materials and Methods : The study. that was generated for two human normal cells(RHEK, HGF-l) and two human tumor cells(KB. HT-1080). was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5. 1, 2. 4. and 8Gy were applied to the cells. The two fractions of 1. 2. 4. and 8Gy were separated with a 4-hour time interval. The irradiation was done with 5.38Gy/min dose rate using Cs-137 irradiator at room temperature. Results and Conclusions : 1. In 3-day group. the cell viability of HGF-1 cell was significantly decreased at 2. 4 and 8Gy irradiation, the cell viability of KB cell was significantly decreased at 8Gy irradiation and the cell viability of HT-I080 cell was significantly decreased at 4 and 8Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2. 4 and 8Gy on HGF-1 cell. at 4 and 8Gy on HT-I080 cell. at 8Gy on KB cell. 4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8Gy irradiation. However, there was no correlation between cell viability and apoptosis. 5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  • PDF