DOI QR코드

DOI QR Code

Biology of Glioma Cancer Stem Cells

  • Park, Deric M. (University of Pittsburgh Cancer Institute) ;
  • Rich, Jeremy N. (Department of Stem Cell Biology and Regenerative Medicine Cleveland Clinic)
  • Received : 2009.07.06
  • Accepted : 2009.07.09
  • Published : 2009.07.31

Abstract

Gliomas, much like other cancers, are composed of a heterogeneous mix of neoplastic and non-neoplastic cells that include both native and recruited cells. There is extensive diversity among the tumor cells, with differing capacity for In vitro and in vivo growth, a property intimately linked to the cell's differentiation status. Those cells that are undifferentiated, self-renewing, with the capacity for developing tumors (tumorigenic) cells are designated by some as cancer stem cells, because of the stem-like properties. These cells may be a critical therapeutic target. However the exact identity and cell(s) of origin of the socalled glioma cancer stem cell remain elusive. Here we review the current understanding of glioma cancer stem cell biology.

Keywords

References

  1. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100, 3983-3988 https://doi.org/10.1073/pnas.0530291100
  2. Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., et al. (2009). Donor-derived brain tumor follow-ing neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029
  3. Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and McKay, R.D. (2006). Notch signalling regulates stem cell numbers in vitro and in vitro. Nature 442, 823-826 https://doi.org/10.1038/nature04940
  4. Bachoo, R.M., Maher, E.A., Ligon, K.L., Sharpless, N.E., Chan, S.S., You, M.J., Tang, Y., DeFrances, J., Stover, E., Weissleder, R., et al. (2002). Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1, 269-277 https://doi.org/10.1016/S1535-6108(02)00046-6
  5. Bajenaru, M.L., Zhu, Y., Hedrick, N.M., Donahoe, J., Parada, L.F., and Gutmann, D.H. (2002). Astrocyte-specific inactivation of the neurofibromatosis 1 gene (NF1) is insufficient for astrocytoma formation. Mol. Cell. Biol. 22, 5100-5113 https://doi.org/10.1128/MCB.22.14.5100-5113.2002
  6. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006a). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760 https://doi.org/10.1038/nature05236
  7. Bao, S., Wu, Q., Sathornsumetee, S., Hao, Y., Li, Z., Hjelmeland, A.B., Shi, Q., McLendon, R.E., Bigner, D.D., and Rich, J.N. (2006b). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 66, 7843-7848 https://doi.org/10.1158/0008-5472.CAN-06-1010
  8. Bao, S., Wu, Q., Li, Z., Sathornsumetee, S., Wang, H., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 68, 6043-6048 https://doi.org/10.1158/0008-5472.CAN-08-1079
  9. Bar, E.E., Chaudhry, A., Lin, A., Fan, X., Schreck, K., Matsui, W., Piccirillo, S., Vescovi, A.L., DiMeco, F., Olivi, A., et al. (2007). Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25, 2524-2533 https://doi.org/10.1634/stemcells.2007-0166
  10. Beier, D., Hau, P., Proescholdt, M., Lohmeier, A., Wischhusen, J., Oefner, P.J., Aigner, L., Brawanski, A., Bogdahn, U., and Beier, C.P. (2007). CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67, 4010-4015 https://doi.org/10.1158/0008-5472.CAN-06-4180
  11. Beier, D., Rohrl, S., Pillai, D.R., Schwarz, S., Kunz-Schughart, L.A., Leukel, P., Proescholdt, M., Brawanski, A., Bogdahn, U., Trampe-Kieslich, A., et al. (2008). Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res. 68, 5706-5715 https://doi.org/10.1158/0008-5472.CAN-07-6878
  12. Ben-Porath, I., Thomson, M.W., Carey, V.J., Ge, R., Bell, G.W., Regev, A., and Weinberg, R.A. (2008). An embryonic stem celllike gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499-507 https://doi.org/10.1038/ng.127
  13. Bonnet, D., and Dick, J.E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730-737 https://doi.org/10.1038/nm0797-730
  14. Carstensen, H., Juhler, M., Bogeskov, L., and Laursen, H. (2006). A report of nine newborns with congenital brain tumours. Childs Nerv. Syst. 22, 1427-1431 https://doi.org/10.1007/s00381-006-0115-6
  15. Clarke, M.F., Dick, J.E., Dirks, P.B., Eaves, C.J., Jamieson, C.H., Jones, D.L., Visvader, J., Weissman, I.L., and Wahl, G.M. (2006). Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339-9344 https://doi.org/10.1158/0008-5472.CAN-06-3126
  16. Collins, A.T., Berry, P.A., Hyde, C., Stower, M.J., and Maitland, N.J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946-10951 https://doi.org/10.1158/0008-5472.CAN-05-2018
  17. Conheim, V. (1875). Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 65, 64-69 https://doi.org/10.1007/BF01978936
  18. Dahlstrand, J., Collins, V.P., and Lendahl, U. (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 5334-5341
  19. Dalerba, P., Cho, R.W., and Clarke, M.F. (2007). Cancer stem cells: models and concepts. Ann. Rev. Med. 58, 267-284 https://doi.org/10.1146/annurev.med.58.062105.204854
  20. Dietrich, J., Imitola, J., and Kesari, S. (2008). Mechanisms of Disease: the role of stem cells in the biology and treatment of gliomas. Nat. Clin. Pract. 5, 393-404
  21. Eyler, C.E., Foo, W.C., LaFiura, K.M., McLendon, R.E., Hjelmeland, A.B., and Rich, J.N. (2008). Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26, 3027-3036 https://doi.org/10.1634/stemcells.2007-1073
  22. Fidler, I.J., and Kripke, M.L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science 197, 893-895 https://doi.org/10.1126/science.887927
  23. Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011-7021 https://doi.org/10.1158/0008-5472.CAN-04-1364
  24. Gilbertson, R.J., and Rich, J.N. (2007). Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat. Rev. 7, 733-736 https://doi.org/10.1038/nrc2246
  25. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70 https://doi.org/10.1016/S0092-8674(00)81683-9
  26. Harris, H. (2004). Tumour suppression: putting on the brakes. Nature 427, 201 https://doi.org/10.1038/427201a
  27. Harris, H. (2005). A long view of fashions in cancer research. Bioessays 27, 833-838 https://doi.org/10.1002/bies.20263
  28. Hemmati, H.D., Nakano, I., Lazareff, J.A., Masterman-Smith, M., Geschwind, D.H., Bronner-Fraser, M., and Kornblum, H.I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178-15183 https://doi.org/10.1073/pnas.2036535100
  29. Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., and Fuller, G.N. (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55-57 https://doi.org/10.1038/75596
  30. Horbinski, C., Mintz, A., Engh, J., Lieberman, F., Hamilton, R.L., and Park, D.M. (2009). Post-therapeutic changes in the molecular profile of glioblastomas. J. Clin. Oncol. 27, No 15S, 93
  31. Ignatova, T.N., Kukekov, V.G., Laywell, E.D., Suslov, O.N., Vrionis, F.D., and Steindler, D.A. (2002). Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vivo. Glia 39, 193-206 https://doi.org/10.1002/glia.10094
  32. Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., Quinones-Hinojosa, A., VandenBerg, S., and Alvarez-Buylla, A. (2006). PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187-199 https://doi.org/10.1016/j.neuron.2006.06.012
  33. Joo, K.M., Kim, S.Y., Jin, X., Song, S.Y., Kong, D.S., Lee, J.I., Jeon, J.W., Kim, M.H., Kang, B.G., Jung, Y., et al. (2008). Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas. Lab. Invest. 88, 808-815 https://doi.org/10.1038/labinvest.2008.57
  34. Kim, C.F., Jackson, E.L., Woolfenden, A.E., Lawrence, S., Babar, I., Vogel, S., Crowley, D., Bronson, R.T., and Jacks, T. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823-835 https://doi.org/10.1016/j.cell.2005.03.032
  35. Kreisl, T.N., Kim, L., Moore, K., Duic, P., Royce, C., Stroud, I., Garren, N., Mackey, M., Butman, J.A., Camphausen, K., et al. (2009). Phase II trial of ingle-agent bevacizumab followed by bevacizumab plus irinotecan at tumor rogression in recurrent glioblastoma. J. Clin. Oncol. 27, 740-745 https://doi.org/10.1200/JCO.2008.16.3055
  36. Kripke, M.L., Gruys, E., and Fidler, I.J. (1978). Metastatic heterogeneity of cells from an ultraviolet light-induced murine fibrosar coma of recent origin. Cancer Res. 38, 2962-2967
  37. Lagasse, E. (2008). Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 15, 136-142 https://doi.org/10.1038/sj.gt.3303068
  38. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres- Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648 https://doi.org/10.1038/367645a0
  39. Louis, D.N., Ohgaki, H., Wiestler, O.D., and Cavenee, W.K. (2007). WHO Classification of Tumours of the Central Nervous System; in World Classification of Tumours, International Agency for Research on Cancer (IARC), Lyon
  40. Marchuk, D.A., Saulino, A.M., Tavakkol, R., Swaroop, M., Wallace, M.R., Andersen, L.B., Mitchell, A.L., Gutmann, D.H., Boguski, M., and Collins, F.S. (1991). cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11, 931-940 https://doi.org/10.1016/0888-7543(91)90017-9
  41. Miele, L., Golde, T., and Osborne, B. (2006). Notch signaling in cancer. Curr. Mol. Med. 6, 905-918 https://doi.org/10.2174/156652406779010830
  42. O’Brien, C.A., Pollett, A., Gallinger, S., and Dick, J.E. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106-110 https://doi.org/10.1038/nature05372
  43. Odoux, C., Fohrer, H., Hoppo, T., Guzik, L., Stolz, D.B., Lewis, D.W., Gollin, S.M., Gamblin, T.C., Geller, D.A., and Lagasse, E. (2008). A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Res. 68, 6932-6941 https://doi.org/10.1158/0008-5472.CAN-07-5779
  44. Ogden, A.T., Waziri, A.E., Lochhead, R.A., Fusco, D., Lopez, K., Ellis, J.A., Kang, J., Assanah, M., McKhann, G.M., Sisti, M.B., et al. (2008). Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 62, 505-514; discussion 514-515 https://doi.org/10.1227/01.neu.0000316019.28421.95
  45. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242-245 https://doi.org/10.1126/science.273.5272.242
  46. Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479-494 https://doi.org/10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3
  47. Park, D.M., Li, J., Okamoto, H., Akeju, O., Kim, S.H., Lubensky, I., Vortmeyer, A., Dambrosia, J., Weil, R.J., Oldfield, E.H., et al. (2007). N-CoR pathway targeting induces glioblastoma derived cancer stem cell differentiation. Cell Cycle 6, 467-470 https://doi.org/10.4161/cc.6.4.3856
  48. Park, D.M., Hoeppner, D.J., Ravin, R., Androutsellis-Theotokis, A., Miller, J., Park, M.J., Soeda, A., and McKay, R.D. (2008). SSEA-1 is expressed by glioblastoma-derived cancer stem cells and identifies the highly proliferative fraction. Society for Neuroscience 2008 Annual Meeting Abstract 654.21/DD2
  49. Peiffer, J., and Kleihues, P. (1999). Hans-Joachim Scherer (1906-1945), pioneer in glioma research. Brain Pathol. 9, 241-245 https://doi.org/10.1111/j.1750-3639.1999.tb00222.x
  50. Quinones-Hinojosa, A., Sanai, N., Soriano-Navarro, M., Gonzalez-Perez, O., Mirzadeh, Z., Gil-Perotin, S., Romero-Rodriguez, R., Berger, M.S., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2006). Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415-434 https://doi.org/10.1002/cne.20798
  51. Quintana, E., Shackleton, M., Sabel, M.S., Fullen, D.R., Johnson, T.M., and Morrison, S.J. (2008). Efficient tumour formation by single human melanoma cells. Nature 456, 593-598 https://doi.org/10.1038/nature07567
  52. Ravin, R., Hoeppner, D.J., Munno, D.M., Carmel, L., Sullivan, J., Levitt, D.L., Miller, J.L., Athaide, C., Panchision, D.M., and McKay, R.D. (2008). Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670-680 https://doi.org/10.1016/j.stem.2008.09.012
  53. Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111 https://doi.org/10.1038/35102167
  54. Rich, J.N., and Eyler, C.E. (2008). Cancer stem cells in brain tumor biology. Cold Spring Harbor symposia on quantitative biology 73, 411-420 https://doi.org/10.1101/sqb.2008.73.060
  55. Rizzo, P., Osipo, C., Foreman, K., Golde, T., Osborne, B., and Miele, L. (2008). Rational targeting of Notch signaling in cancer. Oncogene 27, 5124-5131 https://doi.org/10.1038/onc.2008.226
  56. Rosen, J.M., and Jordan, C.T. (2009). The increasing complexity of the cancer stem cell paradigm. Science 324, 1670-1673 https://doi.org/10.1126/science.1171837
  57. Samuelsen, S.O., Bakketeig, L.S., Tretli, S., Johannesen, T.B., and Magnus, P. (2006). Head circumference at birth and risk of brain cancer in childhood: a population-based study. Lancet Oncol. 7, 39-42 https://doi.org/10.1016/S1470-2045(05)70470-8
  58. Schulenburg, A., Ulrich-Pur, H., Thurnher, D., Erovic, B., Florian, S., Sperr, W.R., Kalhs, P., Marian, B., Wrba, F., Zielinski, C.C., et al. (2006). Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107, 2512-2520 https://doi.org/10.1002/cncr.22277
  59. Shen, Q., Goderie, S.K., Jin, L., Karanth, N., Sun, Y., Abramova, N., Vincent, P., Pumiglia, K., and Temple, S. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338-1340 https://doi.org/10.1126/science.1095505
  60. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828
  61. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401 https://doi.org/10.1038/nature03128
  62. Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58-62 https://doi.org/10.1126/science.2898810
  63. Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., Bogdahn, U., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987-996 https://doi.org/10.1056/NEJMoa043330
  64. Taipale, J., and Beachy, P.A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349-354 https://doi.org/10.1038/35077219
  65. Tohyama, T., Lee, V.M., Rorke, L.B., Marvin, M., McKay, R.D., and Trojanowski, J.Q. (1992). Nestin expression in embryonic human euroepithelium and in human neuroepithelial tumor cells. Lab. Invest. 66, 303-313
  66. Uchida, N., Buck, D.W., He, D., Reitsma, M.J., Masek, M., Phan, T.V., Tsukamoto, A.S., Gage, F.H., and Weissman, I.L. (2000). Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720-14725 https://doi.org/10.1073/pnas.97.26.14720
  67. Uhrbom, L., Dai, C., Celestino, J.C., Rosenblum, M.K., Fuller, G.N., and Holland, E.C. (2002). Ink4a-Arf loss cooperates with KRas activation in strocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 62, 5551-5558
  68. Valtz, N.L., Hayes, T.E., Norregaard, T., Liu, S.M., and McKay, R.D. (1991). An embryonic origin for medulloblastoma. New Biol. 3, 364-371
  69. Virchow, R. (1858). Cellular Pathology, Berlin
  70. Vredenburgh, J.J., Desjardins, A., Herndon, J.E., 2nd, Marcello, J., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Sampson, J., et al. (2007). Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722-4729 https://doi.org/10.1200/JCO.2007.12.2440
  71. Wang, J., Sakariassen, P.O., Tsinkalovsky, O., Immervoll, H., Boe, S.O., Svendsen, A., Prestegarden, L., Rosland, G., Thorsen, F., Stuhr, L., et al. (2008). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int. J. Cancer 122, 761-768 https://doi.org/10.1002/ijc.23130
  72. Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D.L., Black, K.L., and Yu, J.S. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392-9400 https://doi.org/10.1038/sj.onc.1208311
  73. Zhu, Y., Romero, M.I., Ghosh, P., Ye, Z., Charnay, P., Rushing, E.J., Marth, J.D., and Parada, L.F. (2001). Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes. Dev. 15, 859-876 https://doi.org/10.1101/gad.862101
  74. Zhu, Y., Guignard, F., Zhao, D., Liu, L., Burns, D.K., Mason, R.P., Messing, A., and Parada, L.F. (2005a). Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8, 119-130 https://doi.org/10.1016/j.ccr.2005.07.004
  75. Zhu, Y., Harada, T., Liu, L., Lush, M.E., Guignard, F., Harada, C., Burns, D.K., Bajenaru, M.L., Gutmann, D.H., and Parada, L.F. (2005b). Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation. Development 132, 5577-5588 https://doi.org/10.1242/dev.02162

Cited by

  1. Recurrent High-Grade Glioma vol.12, pp.4, 2009, https://doi.org/10.1007/s11940-010-0078-5
  2. The Bright and the Dark Sides of DNA Repair in Stem Cells vol.2010, pp.None, 2010, https://doi.org/10.1155/2010/845396
  3. Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth vol.8, pp.2, 2009, https://doi.org/10.1371/journal.pbio.1000319
  4. Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1 vol.340, pp.1, 2009, https://doi.org/10.1007/s11010-010-0426-5
  5. Immune therapeutic targeting of glioma cancer stem cells vol.5, pp.3, 2010, https://doi.org/10.1007/s11523-010-0151-8
  6. Improving the radiosensitivity of radioresistant and hypoxic glioblastoma vol.6, pp.10, 2009, https://doi.org/10.2217/fon.10.123
  7. Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cell characteristics by inducing EGFR expression vol.31, pp.1, 2009, https://doi.org/10.1007/s10059-011-0008-8
  8. Stem cell markers (cytokeratin 15, cytokeratin 19 and p63) in in situ and invasive cutaneous epithelial lesions vol.24, pp.1, 2011, https://doi.org/10.1038/modpathol.2010.180
  9. Instabilité du phénotype cellulaire et cellules initiatrices des gliomes vol.205, pp.1, 2009, https://doi.org/10.1051/jbio/2011002
  10. Clinical Relevance of Tumor Cells with Stem-Like Properties in Pediatric Brain Tumors vol.6, pp.1, 2009, https://doi.org/10.1371/journal.pone.0016375
  11. Frontiers in targeting glioma stem cells vol.47, pp.4, 2011, https://doi.org/10.1016/j.ejca.2010.11.017
  12. Dlxin-1, a member of MAGE family, inhibits cell proliferation, invasion and tumorigenicity of glioma stem cells vol.18, pp.3, 2011, https://doi.org/10.1038/cgt.2010.71
  13. Acidic stress promotes a glioma stem cell phenotype vol.18, pp.5, 2009, https://doi.org/10.1038/cdd.2010.150
  14. A Theory and a Model to Understand Glioblastoma Development Both in the Bulk and in the Microinfiltrated Brain Parenchyma vol.36, pp.11, 2009, https://doi.org/10.1007/s11064-011-0539-6
  15. FoxM1 Promotes β-Catenin Nuclear Localization and Controls Wnt Target-Gene Expression and Glioma Tumorigenesis vol.20, pp.4, 2009, https://doi.org/10.1016/j.ccr.2011.08.016
  16. PI3K and STAT3: A New Alliance vol.1, pp.6, 2011, https://doi.org/10.1158/2159-8290.cd-11-0218
  17. Therapeutic Potential of AZD1480 for the Treatment of Human Glioblastoma vol.10, pp.12, 2009, https://doi.org/10.1158/1535-7163.mct-11-0480
  18. Low Concentration Microenvironments Enhance the Migration of Neonatal Cells of Glial Lineage vol.5, pp.2, 2012, https://doi.org/10.1007/s12195-012-0226-y
  19. Comparison of Spheroids Formed by Rat Glioma Stem Cells and Neural Stem Cells Reveals Differences in Glucose Metabolism and Promising Therapeutic Applications vol.287, pp.40, 2009, https://doi.org/10.1074/jbc.m111.320028
  20. The cellular origin for malignant glioma and prospects for clinical advancements vol.12, pp.4, 2012, https://doi.org/10.1586/erm.12.30
  21. Cortical dysplasia: a possible substrate for brain tumors vol.8, pp.3, 2009, https://doi.org/10.2217/fon.12.6
  22. Isolation, cultivation and identification of brain glioma stem cells by magnetic bead sorting vol.7, pp.13, 2009, https://doi.org/10.3969/j.issn.1673-5374.2012.13.004
  23. Opposing roles of connexin43 in glioma progression vol.1818, pp.8, 2009, https://doi.org/10.1016/j.bbamem.2011.10.022
  24. A New 2-Pyrone Derivative, 5-Bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, Suppresses Stemness in Glioma Stem-Like Cells vol.82, pp.3, 2009, https://doi.org/10.1124/mol.112.078402
  25. Disulfiram, a drug widely used to control alcoholism, suppresses self-renewal of glioblastoma and overrides resistance to temozolomide vol.3, pp.10, 2009, https://doi.org/10.18632/oncotarget.604
  26. CD133+ Melanoma Subpopulations Contribute to Perivascular Niche Morphogenesis and Tumorigenicity through Vasculogenic Mimicry vol.72, pp.19, 2009, https://doi.org/10.1158/0008-5472.can-12-0624
  27. Digital transcriptome profiling of normal and glioblastoma-derived neural stem cells identifies genes associated with patient survival vol.4, pp.10, 2009, https://doi.org/10.1186/gm377
  28. TRAIL and Paclitaxel Synergize to Kill U87 Cells and U87-Derived Stem-Like Cells in Vitro vol.13, pp.12, 2009, https://doi.org/10.3390/ijms13079142
  29. Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth vol.4, pp.1, 2009, https://doi.org/10.1038/ncomms3956
  30. Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis vol.123, pp.1, 2009, https://doi.org/10.1172/jci63811
  31. Nrf2 is required to maintain the self-renewal of glioma stem cells vol.13, pp.None, 2009, https://doi.org/10.1186/1471-2407-13-380
  32. Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies vol.61, pp.1, 2013, https://doi.org/10.1007/s00005-012-0203-0
  33. Cancer-Specific Requirement for BUB1B/BUBR1 in Human Brain Tumor Isolates and Genetically Transformed Cells vol.3, pp.2, 2009, https://doi.org/10.1158/2159-8290.cd-12-0353
  34. Akt and c-Myc Induce Stem-Cell Markers in Mature Primary p53 −/− Astrocytes and Render These Cells Gliomagenic in the Brain of Immunocompetent Mice vol.8, pp.2, 2009, https://doi.org/10.1371/journal.pone.0056691
  35. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells vol.136, pp.5, 2009, https://doi.org/10.1093/brain/awt025
  36. Downregulation of miR-452 Promotes Stem-Like Traits and Tumorigenicity of Gliomas vol.19, pp.13, 2013, https://doi.org/10.1158/1078-0432.ccr-12-3794
  37. Cytomegalovirus pp71 Protein Is Expressed in Human Glioblastoma and Promotes Pro-Angiogenic Signaling by Activation of Stem Cell Factor vol.8, pp.7, 2009, https://doi.org/10.1371/journal.pone.0068176
  38. Correlation between the prognostic value and the expression of the stem cell marker CD133 and isocitrate dehydrogenase1 in glioblastomas vol.115, pp.3, 2013, https://doi.org/10.1007/s11060-013-1234-z
  39. Interleukin-6 is overexpressed and augments invasiveness of human glioma stem cells in vitro vol.30, pp.8, 2013, https://doi.org/10.1007/s10585-013-9599-0
  40. Angiopep-2-conjugated liposomes encapsulating γ-secretase inhibitor for targeting glioblastoma stem cells vol.44, pp.7, 2009, https://doi.org/10.1007/s40005-014-0151-2
  41. CD133 antibody-conjugated immunoliposomes encapsulating gemcitabine for targeting glioblastoma stem cells vol.2, pp.24, 2009, https://doi.org/10.1039/c4tb00185k
  42. A disintegrin and metalloproteinases 10 and 17 modulate the immunogenicity of glioblastoma-initiating cells vol.16, pp.3, 2014, https://doi.org/10.1093/neuonc/not232
  43. Silencing BMI1 eliminates tumor formation of pediatric glioma CD133+ cells not by affecting known targets but by down-regulating a novel set of core genes vol.2, pp.1, 2009, https://doi.org/10.1186/s40478-014-0160-4
  44. Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40 vol.62, pp.5, 2009, https://doi.org/10.1369/0022155414528514
  45. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness vol.14, pp.2, 2014, https://doi.org/10.1038/nrc3638
  46. Interferon-β Induces Loss of Spherogenicity and Overcomes Therapy Resistance of Glioblastoma Stem Cells vol.13, pp.4, 2009, https://doi.org/10.1158/1535-7163.mct-13-0772
  47. Knockdown of nuclear factor erythroid 2-related factor 2 by lentivirus induces differentiation of glioma stem-like cells vol.32, pp.3, 2009, https://doi.org/10.3892/or.2014.3320
  48. Selective Calcium Sensitivity in Immature Glioma Cancer Stem Cells vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0115698
  49. Expression of ZFX gene correlated with the central features of the neoplastic phenotype in human brain tumors with distinct phenotypes vol.4, pp.None, 2009, https://doi.org/10.4103/2277-9175.164000
  50. The Evidence of Glioblastoma Heterogeneity vol.5, pp.None, 2009, https://doi.org/10.1038/srep07979
  51. Expression of a-disintegrin and metalloproteinase 10 correlates with grade of malignancy in human glioma vol.9, pp.5, 2009, https://doi.org/10.3892/ol.2015.2993
  52. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence vol.15, pp.7, 2015, https://doi.org/10.1586/14737175.2015.1051968
  53. The LIM-only transcription factor LMO2 determines tumorigenic and angiogenic traits in glioma stem cells vol.22, pp.9, 2015, https://doi.org/10.1038/cdd.2015.7
  54. Paramagnetic albumin decorated CuInS2/ZnS QDs for CD133+ glioma bimodal MR/fluorescence targeted imaging vol.4, pp.23, 2009, https://doi.org/10.1039/c6tb00834h
  55. An update on the epigenetics of glioblastomas vol.8, pp.9, 2009, https://doi.org/10.2217/epi-2016-0040
  56. Notch3 Signaling-Mediated Melanoma-Endothelial Crosstalk Regulates Melanoma Stem-Like Cell Homeostasis and Niche Morphogenesis vol.97, pp.6, 2009, https://doi.org/10.1038/labinvest.2017.1
  57. Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells vol.19, pp.7, 2009, https://doi.org/10.1093/neuonc/now258
  58. The p38 signaling pathway mediates quiescence of glioma stem cells by regulating epidermal growth factor receptor trafficking vol.8, pp.20, 2017, https://doi.org/10.18632/oncotarget.16741
  59. TRIM 8 regulates stemness in glioblastoma through PIAS 3‐ STAT 3 vol.11, pp.3, 2017, https://doi.org/10.1002/1878-0261.12034
  60. Targetome Analysis Revealed Involvement of MiR-126 in Neurotrophin Signaling Pathway: A Possible Role in Prevention of Glioma Development vol.20, pp.2, 2009, https://doi.org/10.22074/cellj.2018.4901
  61. The Development and Applications of a Dual Optical Imaging System for Studying Glioma Stem Cells vol.18, pp.None, 2009, https://doi.org/10.1177/1536012119870899
  62. Dexamethasone in Glioblastoma Multiforme Therapy: Mechanisms and Controversies vol.12, pp.None, 2019, https://doi.org/10.3389/fnmol.2019.00065
  63. MMP-2 expression and correlation with pathology and MRI of glioma vol.17, pp.2, 2009, https://doi.org/10.3892/ol.2018.9806
  64. Retinoid receptor turnover mediated by sumoylation, ubiquitination and the valosin-containing protein is disrupted in glioblastoma vol.9, pp.1, 2009, https://doi.org/10.1038/s41598-019-52696-3
  65. Radiotherapy versus combination radiotherapy-bevacizumab for the treatment of recurrent high-grade glioma: a systematic review vol.163, pp.7, 2009, https://doi.org/10.1007/s00701-021-04794-3
  66. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells vol.22, pp.20, 2009, https://doi.org/10.3390/ijms222011126