• 제목/요약/키워드: Tube Voltage

검색결과 597건 처리시간 0.025초

X선 단순촬영에 있어서 신장결석의 출현에 관한 검토 (A Study on the Phenomena of Renal Stone in Simple Radiography)

  • 유장수;송재관;허준
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제12권1호
    • /
    • pp.25-29
    • /
    • 1989
  • This paper investigated on influence on the distinguishability of renal stone in the accordance with thickness of object, x-ray tube voltage and base density. In the relationship between object and renal stone shadow, object and tube voltage, the obtained results can be summarized as the following. 1. When thickness of object was thin, the distinguishability increased in base density $2.0{\sim}2.5$, but for adults was best shown in base density 1.5. 2. In the relationship between object and tube voltage, the distinguishability increased at lower tube voltages ($50{\sim}60\;kVp$), using grid. As mentioned above, it was thought that this method was very effective in describing the phenomena of renal stone in film density 1.5, tube voltages 60 kVp.

  • PDF

영상증폭관을 위한 고전압 전원장치 개발 (Development of High Voltage Power Supply for Image Intensifier Tube)

  • 정세교;임정규;권대환;이대식
    • 전력전자학회논문지
    • /
    • 제14권2호
    • /
    • pp.128-133
    • /
    • 2009
  • 본 논문에서는 영상증폭관 (image intensifier tube) 구동을 위한 초소형 경량의 고전압 전원장치의 개발에 대하여 기술하였다. 영상증폭관은 미세한 빛을 증폭하여 야간에도 물체를 식별할 수 있도록 하며, 휴대용 야간 투시경에 사용된다. 영상증폭관을 구동하기 위해서는 배터리 전원을 승압하여, 작은 사이즈에서 수천 볼트의 고전압을 발생하는 전원장치가 필요하다. 본 논문에서는 이를 위한 고전압 전원장치의 설계와 제작에 대해 설명하였으며, 시작품에 대한 실험을 통하여 성능을 검증하였다.

뇌전산화단층검사에서 방사선량 저감을 위한 최적화 프로토콜 연구 (Optimization of Brain Computed Tomography Protocols to Radiation Dose Reduction)

  • 이재승;권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권3호
    • /
    • pp.116-123
    • /
    • 2018
  • This study is a model experimental study using a phantom to propose an optimized brain CT scan protocol that can reduce the radiation dose of a patient and remain quality of image. We investigate the CT scan parameters of brain CT in clinical medical institutions and to measure the important parameters that determine the quality of CT images. We used 52 multislice spiral CT (SOMATOM Definition AS+, Siemens Healthcare, Germany). The scan parameters were tube voltage (kVp), tube current (mAs), scan time, slice thickness, pitch, and scan field of view (SFOV) directly related to the patient's exposure dose. The CT dose indicators were CTDIvol and DLP. The CT images were obtained while increasing the imaging conditions constantly from the phantom limit value (Q1) to the maximum value (Q4) for AAPM CT performance evaluation. And statistics analyzed with Pearson's correlation coefficients. The result of tube voltage that the increase in tube voltage proportionally increases the variation range of the CT number. And similar results were obtained in the qualitative evaluation of the CT image compared to the tube voltage of 120 kVp, which was applied clinically at 100 kVp. Also, the scan conditions were appropriate in the tube current range of 250 mAs to 350 mAs when the tube voltage was 100 kVp. Therefore, by applying the proposed brain CT scanning parameters can be reduced the radiation dose of the patient while maintaining quality of image.

청소년기 여성의 척추측만증 검사에서 유방입사선량 저감효과 (Dose Reduction of the Adolescent Female Breast during Scoliosis Radiography)

  • 진계환
    • 한국방사선학회논문지
    • /
    • 제12권3호
    • /
    • pp.373-379
    • /
    • 2018
  • 본 논문에서는 척추측만증 환자의 진료를 위하여 필요한 Whole Spine Scanography 검사에서 촬영거리, 환자자세(전후 후전 방향), 흉부벽두께, 갈비뼈두께, 폐조직두께, 관전압, 고전압정류방식의 변화에 따른 유방의 입사선량의 차이에 대한 정량적인 자료를 제시하고자 하였다. 환자의 자세(전후방향과 후전방향)에 따른 유방 입사선량의 저감효과를 확인하기 위하여 관전압 90 kVp, 커마 0.1 mGy, 촬영거리 260 cm, 관전압의 리플율이 0인 인버터정류방식, 필터의 두께 3.5 mm, 환자의 흉벽의 두께 120 mm를 조건으로 Simulation of X-ray Spectra program을 이용하여 시뮬레이션 하였다. 그 결과 알루미늄 필터 두께 3.5 mm에서 2.6배, 흉벽의 두께 120 mm에서 25.7배, 고 관전압에서 1.43배, 관전압 리플율 0에서 1.14배의 선량 저감효과가 있었다. 각각의 입사 선량저감효과의 총합은 약 109배이었다. RANDO phantom의 자세(전후방향과 후전방향)에 따른 선량 저감효과를 확인하기 위하여 촬영거리 260 cm, 관전압 90 kVp, 관전류 270 mA, 촬영시간 0.31 sec, 관전압의 리플율이 0인 인버터정류방식, 필터의 두께 3.5 mm을 조건으로 측정한 결과 유방의 입사선량은 전후 방향에 비하여 후전방향이 평균 20.56배의 선량 저감효과가 있었다.

정류방식에 따른 장치의 정확도와 출력 파형의 비교 (Comparison of Accuracy and Output Waveform of Devices According to Rectification Method)

  • 이인자
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.603-610
    • /
    • 2018
  • This study examined the following: accuracy of the exposure conditions in the inverter device and three-phase device; output waveform over the exposure conditions; and average and standard deviation of the output waveform. After assessing whether the dose corresponding to the theoretical dose was presented, the following conclusions were obtained: 1. The accuracy of the tube voltage(kVp) and tube current(mA) exposure time(sec) was within the tolerable level prescribed in Korea's Safety Management Standards. In the error, Inverter device was large the tube voltage and exposure time, the three-phase device was large the tube current. 2. In terms of the output waveform of the exposure conditions and the average and standard deviation of the output waveform, the higher tube voltage and larger tube current resulted in greater standard deviation in pulsation. Moreover, the standard deviation of pulsation was shown to be greater in the inverter device than the three-phase device; there was also greater standard deviation in the inverter device considering the exposure time. 3. Regarding the exposure conditions over the output dose, all linearity showed the coefficient of variation which had an allowable limit of error within 0.05. Although the output dose ratio for the inverter device was 1.00~1.10 times no difference that of the three-phase device, there was almost no difference in dose ratio between the tube currents.

16kW 회전 Aonde형 모노블럭 X-선 발생장치 (A 16kw Rotating Anode type Monoblock X-ray Generator)

  • 오준용;김연충;김학성
    • 전력전자학회논문지
    • /
    • 제11권2호
    • /
    • pp.97-103
    • /
    • 2006
  • 본 논문은 회전형 대용량 진단 X-선 발생장치를 모노 블록 형태로 설계, 병원의 모바일 진단장치나, 산업용 X-선 장치로에 적용이 가능한 16kW급 회전 Anode형 모노블럭 X-선 발생장치에 관한 연구이다. 본 장치는 X-선 발생을 위해 회전 Anode 형의 X-선관을 사용하였고, X-선관의 Anode의 회전을 위한 로터를 구동할 수 있는 로터 구동회로를 추가 하였다. 고주파 고전압용 인버터에는 IGBT(600V/300A)소자를 100kHz로 고주파 스위칭 함으로서 고전압 변압기를 비롯한 고전압 발생부의 크기와 무게를 최소화하였다. 또한, 기존의 16kW급 대용량 진단 X-선 발생장치를 X-선관과 고전압부를 일체화한 모노블록 형태로 설계, 제작하여 부하변동에 따른 X-선 관전압과 관전류의 동작특성을 실험을 통하여 입증하였다.

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • 제9권1호
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

Monte Carlo N-Particle Extended Code를 이용한 연 X선 정전기제거장치의 최적제작에 관한 연구(II) (A Study on the Optimal Make of X-ray Ionizer using the Monte Carlo N-Particle Extended Code(II))

  • 정필훈;이동훈
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.29-33
    • /
    • 2017
  • In order to solve this sort of electrostatic failure in Display and Semiconductor process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. There exist variable factors such as type of tungsten thickness deposited on target, Anode voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. Here, MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was compared according to target material thickness using MCNPX and actual X-ray tube source under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W). At the result, In Tube voltage 5 keV and distance 100 mm, optimal target thickness is $0.05{\mu}m$ and fastest decay time appears + decay time 0.28 sec. - deacy time 0.30 sec. In Tube voltage 10keV and distance 100 mm, optimal target Thickness is $0.16{\mu}m$ and fastest decay time appears + decay time 0.13 sec. - deacy time 0.12 sec. In the tube voltage 15 keV and distance 100 mm, optimal target Thickness is $0.28{\mu}m$ and fastest decay time appears + decay time 0.04 sec. - deacy time 0.05 sec.

Tube Voltage, DNA Double-Strand Breaks, and Image Quality in Coronary CT Angiography

  • Zhu Xiao Lin;Fan Zhou;U. Joseph Schoepf;Balakrishnan Pillai;Chang Sheng Zhou;Wei Quan;Xue Qin Bao;Guang Ming Lu;Long Jiang Zhang
    • Korean Journal of Radiology
    • /
    • 제21권8호
    • /
    • pp.967-977
    • /
    • 2020
  • Objective: To evaluate the effects of tube voltage on image quality in coronary CT angiography (CCTA), the estimated radiation dose, and DNA double-strand breaks (DSBs) in peripheral blood lymphocytes to optimize the use of CCTA in the era of low radiation doses. Materials and Methods: This study included 240 patients who were divided into 2 groups according to the DNA DSB analysis methods, i.e., immunofluorescence microscopy and flow cytometry. Each group was subdivided into 4 subgroups: those receiving CCTA only with different tube voltages of 120, 100, 80, or 70 kVp. Objective and subjective image quality was evaluated by analysis of variance. Radiation dosages were also recorded and compared. Results: There was no significant difference in demographic characteristics between the 2 groups and 4 subgroups in each group (all p > 0.05). As tube voltage decreased, both image quality and radiation dose decreased gradually and significantly. After CCTA, γ-H2AX foci and mean fluorescence intensity in the 120-, 100-, 80-, and 70-kVp groups increased by 0.14, 0.09, 0.07, and 0.06 foci per cell and 21.26, 9.13, 8.10, and 7.13 (all p < 0.05), respectively. The increase in the DNA DSB level in the 120-kVp group was higher than those in the other 3 groups (all p < 0.05), while there was no significant difference in the DSBs levels among these latter groups (all p > 0.05). Conclusion: The 100-kVp tube voltage may be optimal for CCTA when weighing DNA DSBs against the estimated radiation dose and image quality, with further reductions in tube voltage being unnecessary for CCTA.

전기장이 튜브내 예혼합화염 전파속도에 미치는 영향에 관한 연구 (Effect of Electric Fields on Flame Speed of Propagating Premixed Flames in Tube)

  • 류승관;원상희;차민석;정석호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.137-143
    • /
    • 2006
  • The effect of electric fields on flame speed has been investigated experimentally by observing propagating premixed flames in a tube for methane/air mixtures. The flame speeds were measured in both the normal and micro gravity conditions to substantiate the measurements. The results show that the flame speeds were enhanced by both the AC and DC electric fields, as the flame approached to the high voltage electrode located on the one end of the tube. The enhancement of flame speed was proportional to the square root of the electric field intensity, defined as the voltage applied divided by the distance of flame from the high voltage electrode, when the electric field intensity is sufficiently large. When the electric field intensity was low, there existed critical intensities, below which the electric fields did not influence the flame speed. This critical electric field intensity correlated well with the flame speed.

  • PDF