• 제목/요약/키워드: Triple heat exchanger

검색결과 14건 처리시간 0.022초

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권1호
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

냉난방 시스템계 폐열 회수용 3중관 열교환기 특성에 관한 실험적 연구 (A Experimental Study on the Characteristics of Waste Heat Recovery Type Triple Heat Exchanger in the Cooling and Heating Systems)

  • 이광배;이호생;문춘근;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.1091-1095
    • /
    • 2005
  • This study is performed to develop a tripple-tube exchanger which can improve the system efficiency. Three different tube diameters are compacted by one body(tripple-tube) to recover waste heat from heat exchanging among the fluids. With this, the tripple-tube shows higher cooling capacity than the double-tube after comparing between those two systems. The results of this study are basic data to design the optimum tripple-tube heat exchanger.

  • PDF

고온의 강관 냉각용 삼중 열교환기에 대한 열해석 (Thermal analysis on triple-passage heat exchangers for a hot tube cooling system)

  • 고봉환;박승호;신동신
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.615-623
    • /
    • 1999
  • The objective of present study is to analyze a hot steel-tube cooling system as a kind of concentric triple-passage heat exchanger, whose inner tube is moving with a constant speed. Velocities and temperatures of an antioxidant gas flowing between inner and outer tubes are calculated theoretically for both laminar and turbulent flow regimes and used to give Nusselt numbers and friction factors with respect to various radius ratios and velocity ratios. In addition, it is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since the local heat transfer coefficients are dependent on the local heat flux ratios.

  • PDF

고온 세라믹 폐열회수장치의 안전성 향상 연구 (A Study on the Safety Improvement of the High Temperature Ceramic Heat Recovery System)

  • 박용환;강영구;김홍
    • 한국안전학회지
    • /
    • 제11권4호
    • /
    • pp.107-114
    • /
    • 1996
  • A study to Improve the safety of the ceramic heat exchanger In the high temperature heat recovery system was performed in terms of air flow passes. The numerical and finite element analyses on the heat transfer and thermal stresses in the ceramic core related with air passes were carried out. The results showed that the stresses in the ceramic core induced by the thermal expansion are large enough to cause failure of the brittle ceramic core. The imployment of triple-pass air flow for the same ceramic core could increase the efficiency and effectively release approximately 20% of the maximum thermal stressess, thus improving the safety of the ceramic heat exchanger. The use of triple-pass, however, is limited by the amount of air flow due to the increase of pressure drop.

  • PDF

착상을 고려한 극저온 질소-대기 열교환기의 해석 (Analysis of a Cryogenic Nitrogen-Ambient Air Heat Exchanger Including Frost Formation)

  • 최권일;장호명
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.825-834
    • /
    • 2000
  • A heat exchanger analysis is performed to investigate the heating characteristics of cryogenic nitrogen by ambient air for the purpose of cryogenic automotive propulsion. The heat exchanger is a concentric triple-passage for supercritical nitrogen, and the radial fins are attached on the outermost tube for the crossflow of ambient air. The temperature distribution is calculated for the nitrogen along the passage, including the real gas properties of nitrogen, the fluid convections and the conductions through the tube walls and the fins. Since the wall temperature of the outer (ambient side) tube is very low in most cases, a heavy frost can be formed on the surface, affecting the heat exchange performance. By the method of the similarity between the heat and the mass transfer of moist air, the frost growth and the time-dependent effectiveness of the heat exchanger are calculated for various operating conditions. It is concluded that the frost formation can augment the heating of nitrogen during the initial period because of the latent heat, then gradually degrades the heat exchange because of the increased thermal resistance. Practical design issues are discussed for the flow rate of nitrogen, the velocity and humidity of ambient air, and the sizes of the fin.

  • PDF

Performance Analysis of a Triple Pressure HRSG

  • Shin, Jee-Young;Son, Young-Seok;Kim, Moo-Geun;Kim, Jae-Soo-;Jeon, Yong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1746-1755
    • /
    • 2003
  • Operating characteristics of a triple pressure reheat HRSG are analyzed using a commercial software package (Gate Cycle by GE Enter Software). The calculation routine determines all the design parameters including configuration and area of each heat exchanger. The off-design calculation part has the capability of simulating the effect of any operating parameters such as power load, process requirements, and operating mode, etc., on the transient performance of the plant. The arrangement of high-temperature and intermediate-temperature components of the HRSG is changed, and its effect on the steam turbine performance and HRSG characteristics is examined. It is shown that there could be a significant difference in HRSG sizes even though thermal performance is not in great deviation. From the viewpoint of both economics and steam turbine performance, it should be carefully reviewed whether the optimum design point could exist. Off-design performance could be one of the main factors in arranging components of the HRSG because power plants operate at various off-design conditions such as ambient temperature and gas turbine load, etc. It is shown that different heat exchanger configurations lead to different performances with ambient temperature, even though they have almost the same performances at design points.

3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구 (An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply)

  • 이상훈;박종우;임경빈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

복합화력발전 하부시스템의 성능설계해석 (Performance Design Analysis of the Bottoming System of Combined Cycle Power Plants)

  • 이봉렬;김동섭;노승탁;신흥태;전용준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.738-743
    • /
    • 2001
  • A computer program, capable of performing thermal design analysis of the triple pressure bottoming system of combined cycle power plants, was developed. The program is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. The program is applicable to various parametric analyses including optimized design calculation. This paper presents examples of analysis results for the effects of arrangement of heat exchanger units, steam pressures and deaerating sources on design performance indices such as steam turbine power and the size of heat recovery steam generator.

  • PDF

삼중압 열회수 증기발생기와 중기터빈 시스템의 열설계 해석 (Thermal Design Analysis of Triple-Pressure Heat Recovery Steam Generator and Steam Turbine Systems)

  • 김동섭;이봉렬;노승탁;신흥태;전용준
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.507-514
    • /
    • 2002
  • A computation routine, capable of performing thermal design analysis of the triple-pressure bottoming system (heat recovery steam generator and steam turbine) of combined cycle power plants, is developed. It is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. It can be applied to various parametric analyses including optimized design calculation. This paper presents analysis results for the effects on the design performance of heat exchanger arrangements at intermediate and high temperature parts as well as steam pressures. Also examined is the effect of steam sources for deaeration on design performance.

고성능 흡수냉동 사이클의 특성 시뮬레이션 (Simulation of the Characteristics of High-Performance Absorption Cycles)

  • 윤정인;오후규;이용화
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.231-239
    • /
    • 1995
  • This paper describes a computer simulation of the triple effect, water-lithium bromide absorption cooling cycles. The performance of the absorption systems is investigated through cycle simulation to obtain the system characteristics with the cooling water inlet temperature, the working solution concentrations, the ratio of the amount of the weak solution to the high, middle and low temperature generators, and the temperature difference of each solution heat exchanger. The efficiency of different cycles has been studied and the simulation results show that higher coefficient of performance could be obtained for the parallel cycle of constant solution distribution rate. As a result of this analysis, the optimum designs and operating conditions were determined based on the operating conditions and coefficient of performance.