• Title/Summary/Keyword: Trench

Search Result 716, Processing Time 0.119 seconds

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

A Study on the Formation of Trench Gate for High Power DMOSFET Applications (고 전력 DMOSFET 응용을 위한 트렌치 게이트 형성에 관한 연구)

  • 박훈수;구진근;이영기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.713-717
    • /
    • 2004
  • In this study, the etched trench properties including cross-sectional profile, surface roughness, and crystalline defects were investigated depending on the various silicon etching and additive gases, For the case of HBr$He-O_2SiF_4$ trench etching gas mixtures, the excellent trench profile and minimum defects in the silicon trench were achieved. Due to the residual oxide film grown by the additive oxygen gas, which acts as a protective layer during trench etching, the undercut and defects generation in the trench were suppressed. To improve the electrical characteristics of trench gate, the hydrogen annealing process after trench etching was also adopted. Through the hydrogen annealing, the trench corners might be rounded by the silicon atomic migration at the trench corners having high potential. The rounded trench corner can afford to reduce the gate electric field and grow a uniform gate oxide. As a result, dielectric strength and TDDB characteristics of the hydrogen annealed trench gate oxide were remarkably increased compared to the non-hydrogen annealed one.

A Trench Structure for Low Bending Loss of Bent Optical Waveguides (원형으로 굽은 광도파로의 low bending loss를 위한 trench 구조설계: 원통좌표계 FD-BPM)

  • 한영진;김창민
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.373-378
    • /
    • 1995
  • Bending losses of bent optical waveguides are calculated by virtue of the finite difference-beam p propagation method in the cylindrical coordinate system. In order to minimize the radiating losses of bent optical waveguides, we apply the trench structure to the bent waveguides and perform the a analysis to keep track of: 1) the influence of curvature radius on the bending loss without the trench, 2) the influence of curvature radius and refractive index difference on the bending loss with the trench, 3) the influence of the trench width on the bending loss.

  • PDF

The Process and Fabrication of 500 V Unified Trench Gate Power MOSFET (500 V급 Unified Trench Gate Power MOSFET 공정 및 제작에 관한 연구)

  • Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.720-725
    • /
    • 2013
  • Power MOSFET operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. We have analyzed trench process, field limit ring process for fabrication of unified trench gate power MOSFET. And we have analyzed electrical characteristics of fabricated unified trench gate power MOSFET. The optimal trench process was based on SF6. After we carried out SEM measurement, we obtained superior trench gate and field limit ring process. And we compared electrical characteristics of planar and trench gate unified power MOSFET after completing device fabrication. As a result, the both of them was obtained 500 V breakdown voltage. However trench gate unified power MOSFET was shown improved Vth and on state voltage drop characteristics than planar gate unified power MOSFET.

The Fluid Loss and Sealing Mechanisms in Slurry Trench Condition (II) : Finite Element Models of Fluid Loss for a Slurry Trench (Slurry wall 공법에서 안정액의 역할 (II) : 유한요소해석법 적용)

  • Kim, Hak-Moon
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.249-256
    • /
    • 2002
  • The stability of slurry trench system is closely associated with the characteristics of the filter cake (assumed impervious membrane) transferring the hydrostatic force of slurry to the trench walls. The effectiveness of this assumption in a wide range of trench systems has been examined with the aid of a Finite Element program. Build up of excess porewater pressure in the soil mass behind the filter cake is a function of the slurry density, the properties of filter cake, the ground conditions, time, the geometry of trench and the original ground water level. These factors were all investigated by the Finite Element Method. The most significant factors were found to be the ground conditions and the properties of filter cake.

Optimization of Ar Reshape Process for 4H-SiC Trench MOSFET (4H-SiC Trench MOSFET 응용을 위한 Ar Reshape 공정 최적화)

  • Sung, Min-Je;Kang, Min-Jae;Kim, Hong-Ki;Kim, Seong-jun;Lee, Jung-Yoon;Lee, Wonbeom;Lee, Nam-suk;Shin, Hoon-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1234-1237
    • /
    • 2018
  • For 4H-SiC trench MOSFET which can reduce on-resistance and switching losses compared to 4H-SiC planar MOSFET, the optimization study for decrease of sub-trench was carried out. In order to decrease sub-trench, Ar reshape process was used and trench shapes were observed as a function of temperature and process time. As a result, it was confirmed that the process conditions for $1500^{\circ}C$ and 20 min were most effective for the suitable trench profiles. In addition, dry/wet oxidation was performed at the Ar reshaped-samples to observe the oxidation thickness with different crystal orientations.

Analysis of electrical characteristics according to the design parameter of 1200V 4H-SiC trench MOSFET (1200V급 4H-SiC Trench MOSFET의 Design parameter에 따른 전기적 특성 분석)

  • Woo, Je-Wook;Seo, Jeong-Ju;Jin, Seung-hoo;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.592-597
    • /
    • 2020
  • Since SiC has 10 times higher breakdown field and 3 times higher energy gap than Si, it is possible to manufacture an excellent power MOSFET with a high breakdown voltage. However, since it has a high on-resistance due to low mobility, a Trench MOSFET has been proposed to lower it, but at the same time, it has a problem that BV decreases. The purpose of this paper is to design a 1200V trench MOSFET, and to solve this, split Epi depth, Trench depth, and Trench depth to Epi depth, which are important variables for BV and Ron, to achieve maximum electric field, BV, Ron's reliability characteristics were compared and analyzed. As the epi depth increased, the trench depth decreased, and the epi depth decreased at the trench depth, the maximum electric field decrease, BV increase, and Ron increase were confirmed. All results were simulated by sentaurus TCAD.

A Study on Electrical Characteristics of Trench Field Ring for Breakdown Characteristics (내압특성개선을 위한 트렌치 필드링 설계 및 전기적특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we proposed trench field ring for breakdown voltage of power devices. The proposed trench field ring was improved 10% efficiency comparing with conventional field ring. we analyzed five parameters of trench field ring for design of trench field ring and carried out 2-D devices simulation and process simulations. That is, we analyzed number of field ring, juction depth, distance of field rings, trench width, doping profield. The proposed trench field ring was better to more 1000 V.

A Study on Trench Coat as Classic Fashion Style (클래식 패션으로서의 트렌치 코트(trench coat)에 관한 연구)

  • Kim, Ji-Young
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.9
    • /
    • pp.49-66
    • /
    • 2007
  • Trench coat derived from military uniforms was one of the classical fashion items and has been endeared as everyday outfits thanks to useful traits. Since 1990s classical design of trench coat began to be modified and many variant styles were appeared after 2000s. Trench coat designs after 2000s were appeared as tradition type that was stick to basic British classic style, variation type that was changed in details, colors, materials, and silhouettes, evolution type that was changed into new items, deconstruction type that was dissolved and open-structured. Modern trench coat expressed modern chic, elegance feminine, stylish casual, military and gangster images. The characteristics of trench coat as classic fashion were utility for everyday life style, excellent ability to express images, and strong visual effects of characteristic details. Trench coat was timeless as classic fashion, at the same time, changed into new fashion styles suitable for the sense of the times.