The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.3B
/
pp.143-152
/
2007
In order to provide new value-added services such as a policy-based routing and the quality of services in next generation network, the Internet routers need to classify packets into flows for different treatments, and it is called a packet classification. Since the packet classification should be performed in wire-speed for every packet incoming in several hundred giga-bits per second, the packet classification becomes a bottleneck in the Internet routers. Therefore, high speed packet classification algorithms are required. In this paper, we propose an efficient packet classification architecture based on a hierarchical binary search fee. The proposed architecture hierarchically connects the binary search tree which does not have empty nodes, and hence the proposed architecture reduces the memory requirement and improves the search performance.
This paper presents three different search engines for the detection of CAD-parts in large databases. The analysis of the contained information is performed by the export of the data that is stored in the structure trees of the CAD-models. A preparation program generates one XML-file for every model, which in addition to including the data of the structure tree, also owns certain physical properties of each part. The first search engine is specializes in the discovery of standard parts, like screws or washers. The second program uses certain user input as search parameters, and therefore has the ability to perform personalized queries. The third one compares one given reference part with all parts in the database, and locates files that are identical, or similar to, the reference part. All approaches run automatically, and have the analysis of the structure tree in common. Files constructed with CATIA V5, and search engines written with Python have been used for the implementation. The paper also includes a short comparison of the advantages and disadvantages of each program, as well as a performance test.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.1C
/
pp.37-47
/
2011
In this paper, we propose a novel ML decoding scheme based on the combination of depth- and breadth-first search methods on a partitioned tree for multiple input multiple output systems. The proposed scheme first partitions the searching tree into several stages, each of which is then searched by a depth- or breadth-first search method, possibly exploiting the advantages of both the depth- and breadth-first search methods in an organized way. Numerical results indicate that, when the depth- and breadth-first search algorithms are adopted appropriately, the proposed scheme exhibits substantially lower computational complexity than conventional ML decoders while maintaining the ML bit error performance.
Accurate prediction of stochastic behavior of occupants is a well known problem for improving prediction performance of building energy use. Many researchers have been tried various sensors that have information on the status of occupant such as $CO_2$ sensor, infrared motion detector, RFID etc. to predict occupants, while others have been developed some algorithm to find occupancy probability with those sensors or some indirect monitoring data such as energy consumption in spaces. In this research, various sensor data and energy consumption data are utilized for decision tree algorithms (C4.5 & CART) for estimation of sub-hourly occupancy status. Although the experiment is limited by space (private room) and period (cooling season), the prediction result shows good agreement of above 95% accuracy when energy consumption data are used instead of measured $CO_2$ value. This result indicates potential of IoT data for awareness of indoor environmental status.
There are many things in common between hemodynamics in arterial systems and multibody dynamics in mechanical systems. Hemodynamics is concerned with the forces generated by the heart and the resulting motion of blood through the multi-branched vascular system. The conventional hemodynamics model has been intended to show the general behavior of the body arterial system with the frequency domain based linear model. The need for detailed models to analyze the local part like coronary arterial tree and cerebral arterial tree has been required recently. Non-linear analysis techniques are well-developed in multibody dynamics. In this paper, the studies of hemodynamics are summarized from the view of multibody dynamics. Computational algorithms of arterial tree analysis is derived, and proved by experiments on animals. The flow and pressure of each branch are calculated from the measured flow data at the ascending aorta. The simulated results of the carotid artery and the iliac artery show in good accordance with the measured results.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.6
no.4
/
pp.1188-1202
/
2012
In this paper, we propose a new multi-scale connected coherence tree algorithm (MCCTA) by improving the connected coherence tree algorithm (CCTA). In contrast to many multi-scale image processing algorithms, MCCTA works on multiple scales space of an image and can adaptively change the parameters to capture the coarse and fine level details. Furthermore, we design a Multi-scale Connected Coherence Tree algorithm plus Spectral graph partitioning (MCCTSGP) by combining MCCTA and Spectral graph partitioning in to a new framework. Specifically, the graph nodes are the regions produced by CCTA and the image pixels, and the weights are the affinities between nodes. Then we run a spectral graph partitioning algorithm to partition on the graph which can consider the information both from pixels and regions to improve the quality of segments for providing image segmentation. The experimental results on Berkeley image database demonstrate the accuracy of our algorithm as compared to existing popular methods.
Journal of Electrical Engineering and information Science
/
v.1
no.2
/
pp.134-144
/
1996
In this paper, we propose a new access method, called the HG-tree, to support indexing and retrieval by image content in large image databases. Image content is represented by a point in a multidimensional feature space. The types of queries considered are the range query and the nearest-neighbor query, both in a multidimensional space. Our goals are twofold: increasing the storage utilization and decreasing the area covered by the directory regions of the index tree. The high storage utilization and the small directory area reduce the number of nodes that have to be touched during the query processing. The first goal is achieved by absorbing splitting if possible, and when splitting is necessary, converting two nodes to three. The second goal is achieved by maintaining the area occupied by the directory region minimally on the directory nodes. We note that there is a trade-off between the two design goals, but the HG-tree is so flexible that it can control the trade-off. We present the design of our access method and associated algorithms. In addition, we report the results of a series of tests, comparing the proposed access method with the buddy-tree, which is one of the most successful point access methods for a multidimensional space. The results show the superiority of our method.
Most of the distributed high-dimensional indexing structures provide a reasonable search performance especially when the dataset is uniformly distributed. However, in case when the dataset is clustered or skewed, the search performances gradually degrade as compared with the uniformly distributed dataset. We propose a method of improving the k-nearest neighbor search performance for the distributed vector approximation-tree based on the strongly clustered or skewed dataset. The basic idea is to compute volumes of the leaf nodes on the top-tree of a distributed vector approximation-tree and to assign different number of bits to them in order to assure an identification performance of vector approximation. In other words, it can be done by assigning more bits to the high-density clusters. We conducted experiments to compare the search performance with the distributed hybrid spill-tree and distributed vector approximation-tree by using the synthetic and real data sets. The experimental results show that our proposed scheme provides consistent results with significant performance improvements of the distributed vector approximation-tree for strongly clustered or skewed datasets.
During the past decades, the B+-tree has been most widely used as an index file structure for disk-resident databases. For the disk based B+-tree, a node update can be cheaply performed just by modifying its associated disk page in place. However, in case that the B+-tree is stored on flash memory, the traditional algorithms of the B+-tree come to be useless due to the prohibitive cost of in-place updates on flash memory. For this reason, the earlier schemes for flash memory B+-trees usually take an approach that saves B+-tree changes from real-time updates into extra temporary storage. Although that approach can easily prevent frequent in-place updates in the B+-tree, it can suffer from a waste of storage space and prolonged search times. Particularly, it is not allowable to process range searches on the leaf node level. To resolve such problems, we devise a new scheme in which the leaf nodes and their parent node are stored together in a single flash block, called the p-node block.
The existing content-based spam mail filtering algorithms have difficulties in filtering spam mails when e-mails contain images but little text. In this thesis we propose an efficient spam mail classification algorithm that utilizes the link structure of e-mails. We compute the number of hyperlinks in an e-mail and the in-link frequencies of the web pages hyperlinked in the e-mail. Using these two features we classify spam mails and legitimate mails based on the decision tree trained for spam mail classification. We also suggest a hybrid system combining three different algorithms by majority voting: the link structure analysis algorithm, a modified link structure analysis algorithm, in which only the host part of the hyperlinked pages of an e-mail is used for link structure analysis, and the content-based method using SVM (support vector machines). The experimental results show that the link structure analysis algorithm slightly outperforms the existing content-based method with the accuracy of 94.8%. Moreover, the hybrid system achieves the accuracy of 97.0%, which is a significant performance improvement over the existing method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.