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‘ Content-Based Indexing and Refrieval in Large
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Abstract

In this paper, we propose a new access method, called the HG-tree, to support indexing and retrieval by image content in
large image databases. Image content is represented by a point in a multidimensional feature space. The types of queries
considered are the range query and the nearest-neighbor query, both in a multidimensional space. Our goals are twofold:
increasing the storage utilization and decreasing the area covered by the directory regions of the index tree. The high storage
utilization and the small directory area reduce the number of nodes that have to be touched during the query processing. The
first goal is achieved by absorbing splitting if possible, and when splitting is necessary, converting two nodes to three. The
second goal is achieved by maintaining the area occupied by the directory region minimally on the directory nodes. We note
that there is a trade-off between the two design goals, but the HG-tree is so flexible that it can control the trade-off. We present
the design of our access method and associated algorithms. In addition, we report the results of a series of tests, comparing
the proposed access method with the buddy-tree, which is one of the most successful point access methods for a
multidimensional space. The results show the superiority of our method.

I. Introduction

Image databases are becoming increasingly popular with
many applications such as medical databases, trademark and
copyright databases, CAD/CAM, geographic information
systems, and digital libraries. One of the key issues of these
areas is content-based retrieval which helps users to retrieve
relevant images based on their contents. To provide this
feature effectively, it is essential to develop an efficient
access method that provides fast retrieval.

Content-based retrieval can be achieved with two
approaches. The first is to create a set of attributes,
keywords, or text annotations manually that describe the
content of the image, and then queries are specified using
those properties. The second makes use of the visual content
of the image. It extracts a set of visual features of the
images, and then queries are processed by searching those
features. Some examples of such features are color, texture,
shape and so on. In the first approach, conventional access
methods such as the B-tree [3] and the signature files [8]
can be used. Retrieval by visual features requires more
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sophisticated access method because the features lie in the
domain space with increased dimensionality, ie., n
dimensions. We will focus our attention on the access
methods based on the visual features.

An image is characterized by a feature vector f comprising
of n features, ie., f = (fi, f2, ..., fu), such that f; belongs to
D, i=1, .., n Sets D, i=1, ..., n, are the domains of the
feature vector, from which a value for the feature can be
drawn. The domain space is defined as a Cartesian product,
Dy X D2X...X Dy, of the domains of all organizing features.
Thus an image with n features is represented by a point in
an n-dimensional domain space. We call any subset of the
domain space a region. Generally speaking, the images, or
points within the same region have some features in common
and the regions are in one-to-one correspondence with the
index entries. In this paper we use the terms domain space
and feature space interchangeably. We can formulate the
content-based image indexing problem as a multidimensional
point indexing problem. We distinguish basically between
point access methods (PAMs), such as K-D-B tree [23] and
buddy-tree [26], and spatial access methods (SAMs), such as
R-tree [11] and R*-tree [1], which are designed to handle
multidimensional point data and spatial data, respectively.
We will focus our attention on multidimensional PAM,
because each image object intrinsically corresponds to a point
in a multidimensional feature space.
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Unlike traditional databases, which normally retrieve
objects through the specification of exact queries which are
based on the notion of equality, the types of queries typical
in the image databases are based on the notion of the
similarity [17]. For example, Find all images that are similar
to a given image, within a user-specified tolerance (a range
query), or Given an image, find the 5 most similar images
(a nearest neighbor query). Similarity queries correspond to
range queries or nearest-neighbor queries. Partial match
queries are treated as a special case of general range queries.
Thus we formulate the content-based image retrieval problem
as a nearest neighbor or range search problem.

In this paper, we present a new multidimensional PAM,
named the HG-tree, which has taken into account the
content-based image retrieval and we show how to search for
nearest neighbors as well as for ranges. The paper is
organized as follows. Section 2 surveys related work. Section
3 presents the ideas and properties of the HG-tree and its
associated algorithms. Section 4 gives the experimental
results and analysis which show the superiority of the
HG-tree to the buddy-tree. Section 5 makes the conclusions.

II. Related Work

The basic principle of multidimensional PAM is to divide
the n-dimensional feature space into several regions, each
containing not more than a fixed number of entries. Each
region corresponds to one disk page and, upon becoming full,
is split into two. Since all of the multidimensional access
methods are characterized by the way they divide the domain
space and the way they represent the divided regions, we
classify the multidimensional PAMs according to the
following two properties: whether the domain space is
divided into rectangles or not, and whether the division into
regions is complete or not, i.e. the union of all regions spans
the complete data space or not. According to this
classification we can classify all known PAMs including the
HG-tree into four classes (see Table 1).

Table 1. Classification of multidimensional PAM:s.

prope!
Class Yy Point Access Methods
rectangular | complete

Cl 14 14

grid file (18], BMEH-tree [20],
K-D-B-tree [23], MB+-tree [28]

C2 v BANG file [9], hB-tree [16], BV-tree [10],
zkdb tree [19)

C3 ¥ buddy-tree [26], multilevel grid file [27],
G-tree [15]

C4 HG-tree

The PAMs in class C1 perform rather efficiently for

uniform and uncorrelated data. However, for highly
correlated data their performance degenerates. For example,
the directory of the grid file grows exponentially with the
dimensionality if a strong correlation among attributes exists
and the K-D-B-tree suffers the cascade splitting problem,
that is, the split of one index node causes descendent nodes
to be split as well. The consequences of a single insertion are
thus wholly unpredictable.

The PAMs in class C2 adapt to the clustering of objects
in the data space by allowing more general shapes of
directory region, i.e., not rectangles. However, they require
the representation of the whole data space, that is, the union
of all divided regions spans the complete data space. This
suffers a perfor-mance loss in range queries because the
directory area overlapping the query region increases.

The approach adopted by the PAMs in class C3 is to
maintain the directory region compactly. This is good
especially in the distributions where large portions of empty
data space occur. However, since its region split policy is
severely restricted, it cannot balance the occupancy of the
nodes.

The HG-tree in class C4 attempts to solve above problems
by allowing more general shape of regions like the PAMs in
the class C2 and by representing the regions compactly like
the PAMs in the class C3. In the following section, we
describe the HG-tree and discuss algorithms for insertion,
deletion, and searches for nearest neighbors and ranges.

M. HG-Tree

We now discuss the essential properties of the HG-tree.
First of all, let us consider the performance factors that
determine the query performance. From the analyses of
Faloutsos and Kamel [6] and Pagel et al. [21], that can be
applied to most of the multidimensional access methods
including the HG-tree, the number of nodes D accessed by
the range query ¢ can be estimated as follows:

N N d
D= 311 (i +a) &)

where x;, is the length of the directory region of the node
n in the i-th dimension, g; is the length of the query region
in the i-th dimension, d is dimensionality, N is the number
of entire nodes, and the domain space is assumed to be
normalized to the unit square. The equation (1) says that the
efficiency of the index structure is determined by the two
parameters N and x;,. In the index tree, since the number of
nodes, N and the length of a directory region in one
dimensiona, x;, are determined by the storage utilization and
the area of the directory region, respectively, we can
conclude that it is the storage utilization and the node
coverage of the index structure that determine the
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performance of the index tree.
We define. the storage utilization and the directory
coverage as follows.

Definition 1. The storage utilization U of a tree T is:

g=l o F
U=% &P,

where F; is the number of entries in node i, the P; is the
maximum number of entries that a node i can have, and n
is the number of nodes in the tree.

Definition 2. The node coverage C. of node i and the
directory coverage Cy of tree T are:
Cn(i) = the area spanned by all the entries enclosed in
the node i,

k .
CALT) = L_)l C.(7), where k is the number of nodes in the

tree T

The major aims of the HG-tree are to increase the storage
utilization and to decrease the directory coverage. To achieve
the first goal we use a space filling curve, and specifically,
the Hilbert curve to apply a linear ordering on the data
objects and on the directory regions. A space-filling curve is
a mapping that maps the unit interval onto the n-dimensional
unit hypercube continuously. The path of space-filling curve
provides a linear ordering on the grid points retaining some
of the spatially associative properties of the space. The Peano
curve (also known as the Z curve) [22], the Hilbert curve
[12], and the Gray-code curve [5] are examples of space
filling curves. Faloutsos and Roseman [7] and Jagadish [13]
showed that the Hilbert curve achieves the better clustering
than the others. The basic Hilbert curve on a 2X2 grid,
denoted by H,, and the Hilbert curve of order 2, denoted by
H,, are shown in Fig.1. The Hilbert curve can be generalized
for higher dimensionalities.

H 1 : H7

Fig. 1. Hilbert Curves of order 1 and 2.

The zkdb tree, G-tree, and the MB'-tree also use linear
orders such as Z order and column-wise order. However,
they have a shortcoming in common with respect to the
spatial locality (see Fig. 2). The MB'-tree divides the data
space into three regions M1, M2 and M3. This may

distribute objects such that the distant obijects are clustered in
the same region instead of nearby object's. The zkdb tree and
G-tree have the same problem as shown! in Fig. 2(b). On the
other hand, the directory regions, H1,  H2 and H3 of the
HG-tree in Fig. 2(c) are compact and the nearby objects are
clustered in the same region.

The Hilbert R-tree [14] also uses a Hilbert ordering
scheme, however it is one for spatial data not point data and
its directory regions are rectangular and overlapping unlike
the HG-tree. The HG-tree improves performance through
more general shape of directory region. Moreover, since its
directory regions are disjoint the insertion, deletion, and exact
match search is restricted to exactly only one path.

Mi MM z iz

(c) HG-tree

(a) MB'-tree (b) zkdb tree

Fig. 2. The points in a 2-dimensional space are arranged
in (a) column-wise scan order, (b) Z order, and
(c) Hilbert order. The dashed lines shows the
ordering path and the heavy lines show the
partitioning boundaries. The squares in grid cells
represent data points.

1. Basic Ideas and Properties

The main idea of the HG-tree is to create an indexing
scheme that it can support the followings:

1. when an overflow occurs in a nodé try to absorb it and
when splitting is necessary convert two nodes to three
nodes. As a result of this behavior the index structure
has higher storage utilization;

2. maintain the directory region in' a minimal way to
reduce the directory coverage;

3. control the correlation between the storage utilization
and the directory coverage to compromise the trade-off
between them;

4. maintain the node occupancy not to be fallen below a
certain minimum to have predictable and controllable
worst- case characteristics.

To absorb splitting we need the ordered list of the objects.
We transform Cartesian coordinates in an n-dimensional

feature space into locations on the Hilbert curve. Thus,

objects are represented by locations on the Hilbert curve and
we can store them in a sorted order. Through this ordering
every node has a well-defined set of siblings and the HG-tree
absorbs splitting by redistributing the objects of the

|
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overflowing node into adjacent sibling and adjusting the
directory regions. When splitting is necessary, convert the
two nodes, the overflowing node and one of the two adjacent
siblings, to three nodes (see Fig. 3). Thus this splitting is
called 2-t0-3 splitting. When we select one of the two
adjacent siblings, we select one that makes the directory
coverage minimal. Resulting from this, the HG-tree yields
average storage utilization more than 80% and guarantees the
worst-cast storage utilization is more than 66.7% (2/3) of full
capacity. This concept is similar to that used with the B*-tree
[3]. However, the B*-tree operates on a 1-dimensional space
and the HG-tree can be viewed as a generalization of it.

To reduce the directory coverage we introduce the concept
of minimum bounding interval (MBI) that covers all regions
of the lower nodes. This plays a similar role as a minimum
bounding rectaﬁgle (MBR) used in the SAM such as R-tree.
But it does not allow overlap and is not rectangular. It is
used to determine whether or not a subtree rooted with one
of the children will be visited during searching and data
insertion. For every internal node of the HG-tree, its MBI is
stored. Specifically, an internal node in the HG-tree contains
at most C, entries of the form

(1 ptr)

where C, is the capacity of an internal node, / is the MBI
that encloses all the children of that entry and that is
represented by two Hilbert values at either end of the
interval, and ptr is a pointer to the child node. We maintain
these entries in a Hilbert order. Another advantage of using
linear order is that binary search can be used in searching
these entries within a node. When a node is large, the
difference between a binary search method, with a log(n)
cost and linear search, with an average cost of n/2 is
significant, where n is the number of entries in a node.

With the example 1 we intend to visualize the basic
properties of the HG-tree:

Example 1. Let the dimension be 2 and both of the
capacities of a directory page and a data page be 3. The
snapshots in Fig. 3 depict the growth of the HG-tree. Each
grid cell corresponds to a point of the space, each square and
the number beside it represent a data object and the sequence
of it inserted, respectively, and the dotted line depicts the
Hilbert curve. In the data pages the actual objects are stored.
The MBIs having at most 3 objects are depicted by a fill
pattern. The white area corrensponds to empty data space not
managed by the HG-tree. When the 6th object is inserted, the
data page is not split but the objects are distributed into its
adjacent sibling and the directory regions are adjusted as in
Fig. 3(b). When the 7th object is inserted, two nodes are split
into three as in Fig. 3(c). The insertion of the 10th object
makes an overflow of data page and in turn directory page
increasing the height of HG-tree.
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(d) Insertions of 8th and Sth objects (e) Insertion of 10th object

Fig. 3. The sequence of insertions of 10 objects on the
G-tree.

Although it is known that the trees with best storage
utilization may produce nearly best query performance [24],
it is not always the case. Depending on the data distribution,
the minimal property of directory region can play more
important role than the maximal storage utilization in query
performance. From the extensive performance tests we have
got the experience that there is a trade-off between the
maximal storage utilization and the minimal directory
coverage. When we increase the storage utilization by
absorbing splitting, there is also a tendency to increase the
directory coverage. On the other hand, the storage utilization
is reduced if we only intend to reduce the directory coverage.
With this insight we can relax the 2/3 minimum node
occupancy resulting from 2-to-3 splitting to some extent to
reduce the directory coverage. In HG-tree, we can get good
search performance regardless of data distibution by
controlling the two system parameters, the storage utilization
and the directory coverage adaptively depending on data
distribution. .

Example 2. Fig. 4(a) shows the two nodes resulting from
the split with balanced node occupancy. While this splitting
may enhance the storage utilization, it may result in high
directory coverage. This may have a negative effect on the

of- |-t i B

(a) Split with balanced
node occupancy

(b) Split with minimized
directory coverage

Fig. 4. Two node-split policies.
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query performance depending on data distribution. In such a
case, the insertion algorithm of the HG-tree controls the node
occupancy to reduce the directory coverage at the expense of
the balanced node occupancy. From this, we can get the
result of Fig. 4(b). The directory coverages of Flg 4(a) and
Fig. 4(b) are 15 and 9, respectively.

2. Insertion and Deletion

To insert a new object in the HG-tree, we first calculate
the Hilbert value # of the object and traverse the tree using
it as a key. In each level we choose the branch with
minimum Hilbert distance from s among the entries in the
node. Once we reach the leaf level, we insert the object in
its correct order according to h. Overflow is handled by
redistributing some of its contents to one of its adjacent
siblings or splitting 2 nodes into 3. After a new object is
inserted, we update the MBIs of the affected nodes along the
path. The redistribution algorithm tries to make the directory
coverage minimum.

A deletion is stralghtforward unless it causes an underflow.
In such a case, an underflowing node resulting from a
deletion can borrow keys from or merge with its its adjacent
siblings. So the algorithms for deletion are omitted.

Algorithm Insert(node N, object o)
/* Insert object o into tree rooted at N. h is the Hilbert value of the object */
{
I1. [Find position for new object o]
Use ChooseLeaf(o, h) to choose a leaf node L in which to place 0.
12. [Add object o to leaf node L]
Insert o into L in the appropriate place according to the ‘Hilbert order.
If L overflows, invoke HandleOverflow(L, o), which will return new leaf
if split was inevitable.
I3. [Propagate changes upward]
Form a set § that contains L, its adjacent sibling, and the new leaf (if any).
Use AdjustTree(S) to update the MBIs that have been changed.
4. [Grow tree taller]
If node split propagation caused the root to split, create a new root whose
children are the two resulting nodes.

Algorithm ChooseLeaf(object o, long int k)
/* Select a leaf node in which to place a new object o */
I .
C1. [Initialize] Set N to be the root node.
C2. [Leaf check] If N is a leaf, return N.
C3. [Choose subtree]
If N is not a leaf, choose the entry (I, ptr) with the minimum Hilbert
distance from h to L
C4. [Descend until a leaf is reached]
Set N to the node pointed b)" ptr and repeat from C2.

Algorithm AdjustTree(set S)
/* 8 is a set of nodes that contains the node L being updated, its adjacent sibling
(if overflow has occurred), and newly created node NN (if split has occurred).

|
The routine ascends from leaf level towards the root, adjusting MBI of nodes that
cover the nodes in S. It propagates splits (if any) ¥
l .
AO1. [Initialize] Set N=L.
AO02. [Check if done] If N is the root, stop.
AO3. [Propagate node split upward]
Let P be the parent node of M.
If N has been split, let- NN be the new node
Insert NN in P in the correct order accordmg to ns Hilbert value if
there is room.
Otherwise, invoke HandleOverﬂow(P,NN)
If P is split, let PP be the new node.
AO4. [Adjust the MBIs in parent entry]
Let Z be the set of parent entries for the nodes in S.
Adjust the -corresponding MBIs of the entries in Z appropriately.
AOS5. [Move up to next level]
Repeat from AO2 with N = P and NN = PP, if P was split.

Algorithm HandleOverflow(node N, object o)
/* Return the new node if a split occurred */
{
HOL. Let S be a set that contains all the entries from N and its adjacent sibling. -
HO2. Add o to S.
HO3. If at least one of the 2 siblings is not full,
distribute S between N and its ad]acent sibling.
HO4. If all the 2 siblings are full,
create a new node NN and distribute S among the nodes N, NN, and
its adjacent sibling.
retum NN.

3. Range Searching

The search algorithm starts with the root and examines
each branch that intersects the query region recursively
following these branches. At the leaf level it reports all
entries that intersect the query region as qualified objects.
Examining for intersection, the algorithm first expands the
MBI of the node into the MBR that covers the MBI If the
MBR is fully contained in the query region, then all objects
in the node satisfy the query, or else if it is outside the query
region, it does not have to be con51dered any further. On the
other hand, if it overlaps, the algorlthm divides the original
MBI into two sub-MBIs, MBI, and MBI, along the pom!
bisecting the MBR according to Hilbert sequence and
computes their MBRs, MBR; and MBR; (see Fig. 5). With "
these two new MBRs, the algorithin re-examines - for
intersection. This process proceeds recursively until the sum
of the areas of the resulting MBRs is equal to the area. of
the MBI or the MBI is known to be fully contained: m or
outside the query region. At this point it is determied
whether the MBI overlaps, is wholly contained, or outside-
the query region. For example, in the first test for
intersection in Fig. 5(a), the MBR overlaps the query region.
Since the areas of the MBR and the MBI are not equal (the
areas of MBR and MBI are 8 and 6, resipectively), th: MBR
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is bisected into MBR1 and MBR2 as shown in Fig. 5(b). It
then compares them with the query region, saparately. At this
point, HG-tree determines that the directory region is outside
the query region.

MBR ——»
MeR—,| [-f=
MBI menL —
apoint ¥
aisecting MBR MBL ), _‘I
MBR; .4 ; l

@@ . (b
Fig. 5. Test for intersection in range query processing.

Algorithm RangeSearch(node N, QueryRegion r)
/* Perform a query with range r, Ni.child is a child node of node Ni %
{ .
R1. [Search nonleaf node]
For every entry N; in N
Invoke Overlap(MBR(¥), r) to determine it is contained in,
overlaps, or outside r.
If it is contained in, then output all objects belonging to N
Else if it overlaps, then invoke RangeSearch(N.child, r).
R2. [Search leaf node]
Output all the objects that intersect r.

Algorithm Overlap(MBR I, QueryRegion r)
/* Determine the MBR I is contained in, overlaps, or outside the query region
r¥y
{
Ol. If I is contained in or outside r, return its corresponding indicator.
Else if the area of [ is equal the area of MBI, return an indicator that
it overlaps r.
Else
Bisect the MBI into two MBI, /; and I, along the mid-point of
the MBR.
Invoke Overlap(MBR({;), r) and Overlap(MBR({2), r)
If both of them return indicators that they are contained in or
outside,
return its cormresponding indicator.
Else return an indicator that it overlaps r

4. Nearest-Neighbor Searching

Let D be a distance function defined on an n-dimensional
space. Given a point (x;, x2, ..., x») and a positive integer £,
the k-nearest neighbor query finds the k nearest neighbors of
(x1, x2, ..., xs) with respect to the distance function D.

We can use a branch-and-bound algorithm ([25] for
k-nearest neighbor queries on the HG-tree. Two lower and
upper distance value bounds 3w and by, are introduced to

order and efficiently prune the paths of the search space in
the HG-tree:

(® Biw gives the minimum distance between a given point
and an MBI,

(© Buign gives the distance between a given point and an MBI
that guarantees the finding of an object in MBI at a
Euclidean distance less than or equal to this distance.

diow is used to determine the closest object to a given point
from all those in MBI. However, in fact, due to empty space
inside the MBIs, the nearest neighbor might be much further
than djw. Onign guarantees the presence of an object in MBI
within this distance, because there must be objects in the.
both ends of the MBI. We use these bounds for ordering and
pruning the search tree.

Definition 3. Given a point P in Euclidean space of
dimension n and an MBI I = (H;, H), where H; and H; are
the two end points on I, we define Guign(P, I) as:

Smgn(P, 1) = min (D(P, H;), D(P, H))

where D is an Euclidean distance Function.

Note that computing Bnign requires only two comparisons.
The computation of diow is performed recursively. First of all,
we get the MBR that covers the MBI and compute the
minimum distance of a point in MBR from the query point.
If this point lies in the MBI, then &y is the computed
distance. Otherwise, we bisect the MBI into two sub-MBIs as
in the way used in the intersection test of the range search
and perform above procedure recursively with the two
sub-MBIs. Finally, the minimum of the minimum distances
computed with two sub-MBIs is determined as diw. Fig. 6
illustrates low and high in a 2-dimensional space. Each grid
cell corresponds to a point in a domain space.

The algorithm works as follows : given a query point,
examine the top-level branches, compute the lower bound, 3
ow and the upper bound, g for the distance, and traverse
the most promising branch with the depth first order. At each
stage of traversal, the order of search is determined by the
nondecreasing order of Siw. The objects with the distance to
a given query point greater than 3ygn of the farthest MBI and
the MBIs with 8w greater than the distance between the
query point and the farthest object are discarded in each
traversal stage.
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Fig. 6. &4, and §,,, in a 2-dimensional space.
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Algorithm NNSearch(Node N, Point P, NearestNeighbor

Nearest) : .
/* Return the k nearest neighbors. N is a current node, P is a search point, and
Nearest is the sorted list holding the k current nearest neighbors in nondecreasing
distance order. BranchList is a list holding branches of nonleaf node. Ei.child is
a child node of node Ei %
{
N1. [Search leaf node]
For every entry N; in N B
Determine the distance, dist;, between query point P and the object: Ni.
If dist; is less than Nearest[k].dist
Assign dist; to the Nearest[k].dist.
Assign N; to the Nearest [k].obj.
Rearrange Nearest in correct order.
N2. [Search Nonleaf Node}
For every entry N; in N
Compute the metric bounds 81, and Sugn and store it with N; into a
BranchList. v
Sort the BranchList based on diow.
Remove the unnecessary branches in BranchList as compared with
Nearest.
For arranged entries E; in BranchList
Invoke NNSearch(E;.child, P, Nearesf)
Remove the unnecessary branches in BranchList as compared with
Nearest.

IV. Experimental Results and Analysis

To assess the performance of the HG-tree, we imple-
mented it in C under MS-DOS and ran experiments on a four
dimensional space using a pentium PC. We compared our
method against the buddy-tree. Seeger and’ Kriegel [26]
reported that the buddy-tree is the best one among
multidimensional PAMs with respect to the average range
query performance. For all operations, we have measured the
number of disk accesses per operation.

1. Experimental Setup

To experiment we generated five groups of four
dimensional data files that contained different distributions of
data as in [26]: uniform, diagonal, bit, x-parallel, and
clustered distributions. Each file contains 100,000 objects
without duplicates. To demonstrate the performance for range
queries we generated six groups of range queries. The

~regions of the six groups are squares varying in size which
are 0.01%, 0.1%, 1%, 10%, 20%, and 40% of the data space
and their centers are uniformly distributed in the data space.
To test the nearest-neighbor queries, the numbers of
neighbors we used are 20, 40, 60, 80 100, and 120. For each
experiment, 1,000 randomly generated queries were asked
and the results were averaged. The page size used for data
pages and directory pages is 512 bytes.

As the storage utilization is controllable in the HG-tree, we
experimented two types of the HG-tree with minimum
storage utilization of 66.7% (2/3) and 25% (1/4), which are

abbreviated by HG* and HG+, respectively, in the results.
The buddy-tree is abbreviated by BUDDY.

2. Results and Analysis

For the queries with ranges 0.01% to 40%, we report the
average number of disk accesses per query in-Fig. 7. Fig. 8
shows the average of 1,000 nearest neighbor queries for each
of several different number of nearest neighbors. Tables 2, 3,
and 4 show the range query and nearest neighbor query, and
insertion costs for each distribution as averages over all five
types of queries, respectively. For the sake of an easier
comparability, we have normalized the average number of
page accesses for the queries and the average index file size
in BUDDY to 100% in each table. In Table 5 we computed
the unweighted average over all five distributions.

In Table 5 we measured the followin{g parameters:

O range query: the unweighted range query average over all
five groups of .data files

QO n. n. query: the unweighted nearest neighbor query
average over all five groups of data files

O storage utilization: the average storage utilization

O file size: the average index file size: v

QO insert: the average number of page accesses for an
insertion '

1) Search Cost

Considering Table 5, the HG-tree offers itself to be the
winner of our comparison. We have to take a closer look at
the different distributions. In all cases of the Fig. 7, with the
exception of the small ranges
on the clustered distribution, the HG-tree outperforms the
buddy-tree in all range query performance. For small range
queries on the clustered distribution, the directory coverage is
a more important factor than the storage utilization. The HG+
reduces the directory coverage by reducing the storage
utilization to at least 25% (1/4). The pérformance of range
queries of the HG-tree on the clustered distribution improves
as the size of the query range goes' beyond 1%. The
superiority of the HG-tree to the buddy-tree comes from high
storage utilization above 80% and the control over the node
occupancy. For the nearest-neighbor queries, shown in the
Fig. 8, the HG-tree outperforms the buddy-tree with the
exceptions of the x-parallel distribution and the queries with
the small number of neighbors on the clustered distribution.
The main observation of the Table. 5 is that there is no clear
winner in the nearest neighbor query.

2) Insertion Cost and Storage Utilization

We measured the number of disk accesses (read+write)
needed to build the indexes. We assumed that every- update
of the index would be reflected on the disk. Since the
HG-tree tries to absorb splitting and émploys the 2-to-3
splitting, the number of nodes need to be inspected at
overflow increases. However, Table 4 shows that there is no
clear winner in the insertion cost.

!
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3) Storage Requirements

The HG-tree requires fewer number of nodes (and thus less
storage) than the buddy-tree. The savings are around 30%.
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Fig. 7. Range Query Performance.

Table 2. Unweighted average over all 5 types of range

queries depending on the distribution.

0.1 1 10 20 40

M

uniform | clustered bit x-parallel | diagonal

BUDDY 100.0 100.0 100.0 100.0 100.0
HG* 94.8 85.1 74.3 715 74.3
HG+ 96.3 84.3 75.8 78.4 74.5
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Fig. 8. Nearest Neighbor Query Performance.

Table 3. Unweighted average over all 5 types of nearest
neighbor queries depending on the distribution.

uniform | clustered bit x-parallel | diagonal

BUDDY 100.0 100.0 100.0 100.0 100.0
HG* 92.1 98.4 95.6 124.0 86.5
HG+ 92.9 97.4 97.6 1252 90.6

Table 4. unweighted average over all 5 types of inserts
depending on the distribution.

uniform | clustered bit );-parallel diagonal

BUDDY 4.07 4.70 5.20 ’ 534 5.24
HG* 4.09 4.73 3.51 “ 3.97 4.09
HG+ 4.67 475 409 | 459 4.72

Table 5. unweighted average over all 5 distributions.

range storage . :
n.n. query e file size | insert
query utilization
BUDDY | 100.0 100.0 61.8 1000 | 491
HG* 81.2 99.3 84.3 69.4 | 4.08
HG+ 81.9 100.7 80.7 727 | 4.56

V. Conclusicns

In this paper, we proposed the HG-tree as an access
method for content-based retrieval in large image database.
Contrary to previously suggested multidimensional PAMs,
the HG-tree tries to absorb splitting and when splitting is
necessary, converts two nodes to three by using the Hilbert
ordering. Through these properties, the HG-tree achieves the
average storage utilization more than 80%. Moreover, it
attempts to reduce the directory coverage by maintaining the
directory regions as minimal as possible. In addition, by
controlling the trade-off between the maximal storage
utilization and the minimal directory coverage it can cope
with a wide range of data distributions. ‘

Based on these ideas, we designed and implemented the
HG-tree and carried out performance experiments, comparing
our method to the buddy-tree. Summarizi;ng the outcome of
our comparisons, we can state that the HG-tree exhibits
around 18% better average range query performance than the
buddy-tree, and results in a reduction in the size of a tree,
and hence its storage cost. The good performance of the
HG-tree is not by chance, but comes from the overall control
over the storage utilization and the directory coverage.

Future work could focus on the analysis of the PAM
including the HG-tree, providing analytical formulas that
pridict the response time of the nearest neighbor queries.
Another area of future research is the integration of the
HG-tree with different types of indexing methods such as
signature files [8], iconic indexes [2, 4] to support a wide
range of queries, both text-based and corrtent-based.
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