

Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172
www.jcde.org

A comparison of three design tree based search algorithms for the detec-
tion of engineering parts constructed with CATIA V5 in large databases

Robin Roj1,*
1 University of Wuppertal (FB D Mechanical Engineering, Mechanical Engineering Informatics, D 42097 Wuppertal, Germany)

(Manuscript Received January 26, 2014; Revised April 24, 2014; Accepted April 24, 2014)

--

Abstract

This paper presents three different search engines for the detection of CAD-parts in large databases. The analysis of the contained in-

formation is performed by the export of the data that is stored in the structure trees of the CAD-models. A preparation program generates
one XML-file for every model, which in addition to including the data of the structure tree, also owns certain physical properties of each
part. The first search engine is specializes in the discovery of standard parts, like screws or washers. The second program uses certain
user input as search parameters, and therefore has the ability to perform personalized queries. The third one compares one given reference
part with all parts in the database, and locates files that are identical, or similar to, the reference part. All approaches run automatically,
and have the analysis of the structure tree in common. Files constructed with CATIA V5, and search engines written with Python have
been used for the implementation. The paper also includes a short comparison of the advantages and disadvantages of each program, as
well as a performance test.

Keywords: CAD; CATIA V5; Classification; Database; Dat mining; Design tree; Feature recognition; Knowledge Discovery; Python; Search engine

--

1. Introduction

Contemporary construction techniques of engineering parts
are heavily influenced by the usage of computer-aided meth-
ods for the virtual design of new products, as well as for the
management of whole projects. The appropriate software is
available for the different demands, like e.g., the conception
and technical draft of single parts, or the administration and
coordination of several other engineering tasks, and can be
summarized as Computer-Aided Design (CAD) and Com-
puter-Aided Engineering (CAE), respectively. The shift from
manually drawn sketches and sophisticated manufacturing of
prototypes in the development phase of new components to
Virtual Product Development (VPD) supported by simula-
tions or computations has yielded many advantages, in terms
of cost effectiveness and quality improvement.

But new challenges and tasks have arisen with the execu-
tion of computer-aided technology. One major difficulty is
the handling of large amounts of data that are produced dur-
ing the usage of software belonging to Product Lifecycle
Management (PLM). Just a few examples are specialized
files for virtual models, technical drawings, FEM-
calculations and assemblies, or additional data, like tables,

images, presentations, and even videos. A common strategy
in large companies like car manufacturers, who produce a lot
of the mentioned information, is storage in large databases
with company-wide access.

An important question is the setup and the structure of such
a database, depending on the desired objectives. These inten-
tions could be e.g., good documentation of the accomplished
work or might even include all possibilities of comfortable
reaccess to the stored information. Because of the many im-
aginable styles of the warehousing of data in databases, like
alphabetical or chronological order, as well as sorting de-
pending on the different departments or branches of a com-
pany, it can be a challenging task to regain once stored in-
formation.

For this research area, the keywords Knowledge Discovery
in Databases (KDD) and Data Mining are introduced. Ac-
cording to Fayyad, Piatetsky-Shapiro and Smyth KDD, can
be defined as a procedure [1]: “KDD is the nontrivial process
of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data.”

The same authors describe the approach of KDD, as fol-
lows [2]: “KDD focuses on the overall process of knowledge
discovery from data, including how the data are stored and
accessed, how algorithms can be scaled to massive datasets
and still run effectively, how results can be interpreted and
visualized, and how the overall man-machine interaction can

*Corresponding author. Tel.: +49-202-439-2090, Fax.: +49-202-439-2091
E-mail address: r.roj@uni-wuppertal.de

© Society of CAD/CAM Engineers & Techno-Press

doi: 10.7315/JCDE.2014.016

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

usefully be modeled and supported.”
Frawley, Piatetsky-Shapiro and Matheus consider the three

most important aims of KDD to be summarization, discrimi-
nation and comparison, referring to a clear distinction and
categorization of the properties of extracted data [3].

Data Mining describes a similar strategy and the etymology
developed according to Petersohn from colloquial language
for the exploitation or extraction of rare materials, compared
with valuable information from large amounts of data [4]. A
good overview is provided by Gorunescu [5]. Hilderman and
Hamilton describe an evaluation of the extracted information
for the measurement of interestingness. They consider classi-
fication, association, clustering and correlation as the four
most important techniques for the extraction of data [6].

This publication presents a specific case of data extraction.
For the implementation of the algorithms, the CAD program
CATIA V5, and the programming language Python have
been chosen. Due to the fact that Python is connectable with
CATIA via the COM-interface both programs are predesti-
nated for the creation of macros, which are able to automate
certain steps that are usually done by hand. The examination
of a large database filled with engineering parts constructed
with CATIA is demonstrated. As already mentioned the aim
is a certain kind of classification of random components that
should work as automatically and independent as possible.

 At this point, the constitution of CAD models generated
by most CAD systems, as well as CATIA should be ex-
plained briefly. Usually, the constructor builds the virtual
model of the engineering part by the usage of several func-
tions, like e.g., extrusions, rotations, drillings, roundings, or
chamfers, to gain the intended shape. These properties of
each part are called features. According to Vajna et al. [7],
features can not only be labeled as geometrical elements, but
also as relevant informational elements like relations and
constraints.

The set of all features, and the unambiguous determination
of every feature a model consists of, forms the precise defini-
tion of the part; and the combination of both leads to a certain
singularity. All common CAD systems save these features in
the created files, and also in the so called construction tree or
design tree, where the user is able to comprehend the con-
tained specifications. According to Kornprobst, the structure
tree illustrates all the construction steps, which lead to explic-
it geometry or rules in a chronological order [8].

In Sections 3 and 4, three search algorithms are introduced,
which examine the structure trees of given CAD models. The
information contained in the structure trees are outsourced
from CATIA, and stored in the form of XML-files for easier
access, and subsequent classification. In Section 5, the ad-
vantages and disadvantages of the three search algorithms are
compared, and the cases they are more or less appropriate for
are determined.

2. State of the art

For the setting described in Section 1, many scientific and
industrial concepts already exist. Here it should focus on
engineering applications, and thus databases that are filled
with CAD and CAE files, respectively. Approaches dealing
with the general structure of such information are presented
by Ester et al. [9], who focus on spatial databases; as well as
Haffey and Duffy [10], who connect the topic with design
issues. The dissertation of Angkasith concentrates on modu-
lar design [11]. In particular, the management of engineering
products, which are manufactured by several suppliers and
only mounted by the principal, is quite ambitious, regarding
the administration of the generated data, and the coordination
of every single working step. For such cases, a separation of
the final product into modules might be time and cost reduc-
ing.

The representation of knowledge, and the interaction of the
single elements with each other, can be visualized e.g., by
directed graphs. Also, the above mentioned structure tree of
CATIA is considered as a graph, and therefore outsourced
into the XML-format, which is able to illustrate hierarchical
structures. An example of the usage of graphs for the descrip-
tion of complex circumstances is presented by Kizu et al.
[12]. They show a method for CAD Data Mining, and the
detection of two-dimensional objects.

For engineering applications, not only the virtual construc-
tion of new products is important, but also a well elaborated
production plan. Consequently, a strict separation of CAD
features and manufacturing features take place, and has to be
taken into account during the automatic feature recognition.
A comprehensive review of Data Mining in manufacturing is
given by Harding et al. [13].

Babic, Nesic and Miljkovic list the three main problems of
Automated Feature Recognition (AFR) as 1. Extraction of
the geometric primitives from a CAD model, 2. Defining a
suitable part representation for form feature identification,
and 3. Feature pattern matching/recognition [14]. In another
review by Iyer et al. [15], the following techniques for the
detection of shapes are structured in six categories: 1. Global
feature-based techniques, 2. Manufacturing feature recogni-
tion-based techniques, 3. Graph-based techniques, 4. Histo-
gram-based techniques, 5. Product information-based tech-
niques, and 6. 3D object recognition-based techniques.

Two vivid examples of the automated recognition of three-
dimensional objects are suggested by Min and Bowyer [16],
who detect edges and reconstruct surfaces by image segmen-
tation; and Cucchiara et al. [17], who use visual constraint
graphs for an analysis of spatial components. Relational
graphs are also used by Flynn and Jain [18]. They connect
their topic with the storage of gained information in a data-
base, which might later be used as a basis for manufacturing.
While their publication deals with a library of proprietary
CAD files, Cybenko, Bhasin and Cohen plan a global system
for the representation, and in particular the reuse of once
detected shapes [19]. By applying the examination tech-
niques already in the design phase, and the usage of voxel-

162

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

based approximations, the current part is compared to all
related files in a database, to identify similarities, and to inte-
grate new objects into that library.

Of course, all of these techniques should reduce costs, and
increase efficiency in the design and manufacturing process.
Ip and Regli [20] focus on the recognition of fabrication fea-
tures in particular. With such an automated recognition of
features, and the separation into production steps, the se-
quence of machine application can be generated without any
human assistance. Horváth and Rudas [21] describe the ne-
cessity of such interdisciplinary cooperation.

With once extracted features and any other information,
respectively, a systematic and automated search in a database
can take place. The following publications deal with search
engines, which use the user’s input as search parameters to
find certain models in a database. The strategy of Min et al.
[22] can be partitioned into three steps: (1) Acquisition: 3D
models have to be collected from the web, (2) Analysis: They
have to be analyzed for later matching, and (3) Query pro-
cessing and matching: An online system has to match user
queries to the collected 3D models.

Another approach of Data Mining techniques connected
with a search engine is presented by Wei and Yuanjun [23].
For the retrieval of parts in a large database, they use voxel-
based technologies; whereas Ansary, Daoudi and Vandeborre
focus on two-dimensional views, to implement a method they
call adaptive views clustering [24]. With that procedure, they
are able to retrieve three-dimensional models from a database.

At this point, it should be referred to the Princeton Shape
Retrieval and Analysis Group [25], where several publica-
tions, like e.g., the dissertation of Min [26], and the journal
paper of Funkhouser et al. [27], deal with the topic of three-
dimensional detection of shapes in databases in detail.

Another strategy for the handling of gathered information
from databases, or feature parameters from single parts, is the
categorization into classes. For engineering parts in particular,
an order of CAD models into different types is recommenda-
ble. If the database of an automobile manufacturer is consid-
ered, an imaginable separation of all components into the
various car units is a common practice for the division into
different departments in the company, as well as an order
from different suppliers. For this task, an algorithm called K-

means is a common tool. Michalik, Štofa and Zolotová test
the properties of the K-means algorithm on Data Mining
applications [28].

A neat example of the classification of symmetric rotation-
al parts by the recognition of surface features is given by
Wang and Chang [29]. They suggest a method that makes
any human assistance redundant.

All mentioned requirements that are necessary for user-
friendly operability of software are realized in the following
three programs, which are designed for application in indus-
try. First a program called Geolus Search by Siemens is in-
troduced [30]. Basically, it can be considered as a three-
dimensional search engine for tessellated CAD models. The
user predetermines a reference part, and provides the data-
base, which should be examined. Further options can be cho-
sen by refining the search for identical, very similar or similar
parts. The graphical user interface shows all matching files
stored in the memory, and enables a selection of the located
models for possible update or continue constructions. The
intention is a reduction and elimination, respectively, of re-
dundant models that are already available in the storage. Thus,
the time for the creation of new components can be reduced,
and thereby the labor costs.

The second program that deals with the automatic classifi-
cation of parts is called simus classmate by Lino [31]. It spe-
cializes in the automatic analysis and sorting of CAD models
to gain information of interest, such as the maximum sizes,
the number of drillings, the materials, or the different thread
parameters of each element. With this extracted information,
a categorization into classes, like turned parts or sheet metal
parts, is enabled and realizable with a few mouse clicks. An-
other advantage is the complete integration of the program
into the established CAD programs from different publishers.

The last considerable program is split up into several pack-
ages, programmed by the company CADENAS [32]. Soft-
ware called PARTSolutions is designed for the management
and influence of construction parts already in the creation
phase, to limit all actions only to the necessary steps. The
other package, called PURCHINEERING, treats all chal-
lenges arising with the purchase of the required construction
parts.

In summary, it can be stated that many diverse approaches

Table 1. Overview of all programs.

Program Description Input Output

tree.py
Outsources the structure trees

of CATIA to XML-files
Database with CATPart-files Database with XML-files

norm.py
Searches for standardized
parts in the given database

Database with XML-files and
CATPart-files, name of a norm part

Names of the located files that are similar
to the selected norm part

category.py
Searches for parts in

the given database that
fit to the parameters

Database with XML-files and
CATPart-files, search parameters

Names of the located files that
fit the given parameters

match.py
Searches for parts in

the given database that
match to the reference

Database with XML-files and
CATPart-files, reference XML-file

and CATPart-file input-part

Names of the located files in three catego-
ries (perfect, very good, good)

163

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

for the difficulty of CAD management already exist, and the
development of specialized software depends on the given
requirements for the particular cases of application.

3. Approach

As already stated in Section 1, the method presented here
can be separated into three Python programs (norm.py, cate-
gory.py, and match.py), which search with different strate-
gies for CAD-parts in a given database. Table 1 shows in the
dark grey segment a short description of these programs, as
well as the input, which has to be given by the user, before
the actual search can begin, and the output. The light grey
segment consists of the preparation program (tree.py) that is
necessary as an initializing step to create the XML-files.

3.1 Outsourcing the structure tree

To explain the meaning of this first preparation program
tree.py, the situation mentioned in Section 1 should be reiter-
ated. If the database of a large company, like e.g., a car man-
ufacturer is considered, large amounts of CAD-models are
stored in many imaginable patterns. A common method is a
key number as a filename for every part, which is not very
significant at first sight, but might be very substantial if it is
decoded. Another conceivable warehousing strategy is a di-
rectory system with an arrangement into several categories,
like departments, machine units, or construction dates. But
also in such a case, the filenames of the CAD-models are
probably not very informative, regarding the shape, size or
function of each part. Usually, the constructor has to open
each file manually, to obtain some detailed information about
it, which is time and cost consuming. Especially, the search
after a specific component using only visible filenames can
be very sophisticated and intensive.

The program tree.py provides the conversion from auto-
matically unreadable CAD-files, to easy examinable XML-
files. As already mentioned, the structure tree of CATIA

consists of many entries divided into a hierarchical order. All
user actions, together with some additional information, are
contained in it. Thus, the related models are replicable with a
known structure tree; and without any other data an unam-
biguous recreation is ensured. The XML file format is ade-
quate for the requirements of an extracted text-based struc-
ture tree. Each file is built by so-called tags, which are ar-
ranged in several levels, and can contain beside a meaningful
name also attributes and element contents. With these pre-
conditions, all the data a CAD-model consists of can be con-
veniently stored into a mentioned XML-file.

A good example of such a hierarchy is a point, which has
three coordinate parameters, is a geometric primitive, and
part of a sketch. In this sketch, some constraints are also in-
cluded and it builds a foundation for a three-dimensional
element. This element might also be a small part of many
other elements that build the full body of a CAD-model. Al-
ready with this short example, the successive architecture of
every file can be outlined.

Figure 1 shows a simple o-ring and the associated structure
tree in CATIA. Here, the construction steps the user has con-
ducted are recognizable. Only a small circle (Circle.1, Radi-
us.2), with a center point (Point.1), at a certain distance (Off-
set.3) from the rotation axis, was necessary to create this
shape. The command shaft (Shaft.1) has been chosen for the
turn of the sketch around a selected axis. It is also observable
that this file consists of only one body (PartBody). In more
complex files, where e.g., Boolean operations are used, sev-
eral bodies are needed.

At this point, the internal procedures of the program tree.py
are only explained in summary form. During the processing
of the program, Python accesses the running CATIA inter-
face, opens every file that is contained in the given directory,
and analyses the appropriate structure trees. The control of
the program is very easy for the user. Before the outsourcing
begins, he or she only has to specify one input folder, where
one or many CAD-files are saved (the database), and one
output folder, where the created XML-files should be stored.
For the generation of the text-based XML-files the Python
package Beautiful Soup was implemented into the source
code. It can be labeled as a parser and is able to simplify the
handling of XML structures.

In Figure 2 the XML-file of the o-ring is depicted. Beside
the already explained structures, the purple specifications at
the beginning and the black numbers in the middle are par-
ticularly remarkable. Here, it should be emphasized that the
XML-file contains even more information than the structure
tree holds at first sight. At the beginning, also the name of the
file, the maximum measurements in the x-, y- and z-
directions in mm, the volume in mm³, the surface in mm², the
centroid of the part from the absolute zero in mm, and the
moment of inertia matrix, with nine entries in kg*m², are
listed. In the middle part the coordinates of the point (the z-
coordinate is not defined, because the sketch is two-
dimensional), the radius of the circle, and the distance of the

Figure 1. CAD-model and design tree of an o-ring in CATIA.

164

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

circle from the axis of rotation are specified.
With the creation of one XML-file for every CATPart in

the database, several advantages take place. On the one hand,
the program runs completely independently and automatical-
ly. If huge amounts of files should be outsourced, the whole
process might take a long time; but beside the provision of
the input information at the beginning, human interaction is
no longer necessary. Another great advantage is the redun-
dancy of the expensive CAD-program after the generation of
the XML-files. The information is then accessible with every
text editor, and a license is not needed any more. The three
search programs focus only on the analysis, and the evalua-
tion of these XML-files. Because of this, tree.py can be la-
beled as a preparation program for the actual search.

3.2.1 Searching for standard parts

In this section, the program norm.py is presented in detail.
The intention is the retrieval of standardized parts in the well
explained scenario of a large database. Standard parts are
small and simple components, which are usually used for the
mounting of assemblies. Often they are in accordance with
norm systems, like the ISO (International Organization for
Standardization), DIN (Deutsches Institut für Normung), or
EN (Europäische Normen) standards. Until now, in the
source code of the program the following eight standard parts
are included: (1) Hexagon screws, (2) Cylinder head screws,
(3) Square keys, (4) Hexagon nuts, (5) Dome nuts, (6) Wash-
ers, (7) O-ring seals, and (8) Disc springs.

The search algorithm is rather simple. To create these small
standard parts with CATIA, there are always only a few ways
to implement the shapes. With the first part in the list, the
hexagon screw, the approach should be demonstrated. As it
can be seen in Figure 3, a hexagon screw might have differ-
ent sizes, and more or less varying structure trees. To the
screw on the left hand side, some details like a chamfer at the
shaft and a groove at the top have been added. But for a hu-

Figure 2. Outsourced XML-file of the o-ring.

(a) (b)

Figure 3. Comparison of two standard hexagon screws.

165

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

man observer, both parts are clearly identifiable as screws at
first sight, because both have a hexagonal screw head, a shaft,
and a thread (not visualized in CATIA) in common.

After the user has chosen which standard parts he or she
wants to search for, the program analyses every XML-file in
the database. Then the features saved in the structure tree are
inspected. Usually, every three-dimensional feature contains
at least one two-dimensional sketch. Instead of writing out
the values or the positions of the geometric primitives, the
program identifies the quantity of components, like points,
lines, or circles, as well as their constraints, like coincidences,
parallelisms, or perpendicularities. Also, the number of three-
dimensional features, like pads, threads, shafts or roundings
is counted (cf. Section 3.2.2).

To produce e.g., the shaft of a screw, basically just two
possibilities indicated in Figure 3 exist. Either it is generated
by one circle, which is extruded along the axis of the screw
(Figure 3, right hand side, Pad.2); or a rectangle, which is as
long as the shaft, is rotated around its axis (Figure 3, left hand
side, Shaft.1). The program norm.py takes both possibilities
into consideration. The same principles are valid for the
screw head. Either the constructor can use the CATIA com-
mand for polygons in the basic sketch, or he models a hexa-
gon consisting of six lines, on his or her own. Again, both
ways are recognized by the search algorithm.

If a part in the database should be detected as a hexagon
screw, the following three preconditions must be implied: (1)
The part must own the screw head realized with one extru-
sion and one sketch. To gain the hexagonal shape of the
sketch, either the CATIA command for polygons could have
been used, or the creation was performed manually. (2) The
part must own a shaft created by the command Shaft or the
command Pad. (3) The part must own exactly one thread.

The parts in Figure 3 are both identified as hexagon screws
by the program, because all the mentioned conditions are
fulfilled. With this strategy, the sizes and other details, like
chamfers or roundings are not important, and can be neglect-
ed.

The algorithms for the discovery of the other standard parts
listed above work in a similar way, and need not be explained
in detail. But also simpler parts, like square keys or o-rings
(cf. Figure 1), which are only generatable in one fixed way,
are handled.

The program norm.py exploits the fact, that for the users of
the CAD-software, there are not many ways to retrieve the
simple shapes of standard parts. To gain a three-dimensional
feature of a specific form, usually the command Pad is used,
which is equal to an extrusion of a shape into the third di-
mension. With this command, many standard parts, like e.g.,
the here presented washers and square keys, can already be
generated. Another important command of CATIA is Shaft.
It is mostly used to produce round parts that are created by
the spinning of a profile around an axis.

In fact, the mentioned shape of an ordinary washer can be
gained either by the command Pad, or the command Shaft. If

the command Pad is used, the designer has to draw two con-
centric circles into one sketch, and extrude it into the third
dimension. With the command Shaft, a small rectangle has to
be drafted into one sketch, and rotated around an axis that has
a certain distance from this rectangle. All other ways to re-
trieve the simple shape of a washer need more than one three-
dimensional command, and are therefore not regarded by the
program norm.py. Only these two described possibilities are
considered.

On the one hand, the algorithm is not very flexible with the
analysis of other approaches, but on the other hand, the pro-
cess of rediscovery of such standard parts is drastically sim-
plified. All the program has to do is to either look for the
pattern of the command Pad, which includes two concentric
circles in one sketch in the XML files, or the pattern of the
command Shaft that includes the rectangle, which is built up
by four points and four lines in one sketch. If a standard part
possesses some other details, like e.g., an imprint or a fin, all
geometric primitives that are needed to create that detail are
neglected.

This kind of algorithm works only for simple shapes that
are fulfilled by standard parts. Every standard part that is
contained in the software needs its own source code, and its
own consideration. If in the future, automated searches for
more standard parts should be implemented, every possible
approach for the construction has to be analyzed first. If more
complex engineering components are considered, too many
ways for the creation performed by the designer are possible,
and it would be speculative to detect those kind of parts only
by their number of features.

3.2.2 Personalized user queries

This second subsection deals with the program category.py,
which focuses on search parameters that are entered by the
user. Internally, the structure trees and the XML-files, respec-
tively, of all parts in the database are examined, and again in
particular the number of commands that have been necessary
to create the parts are determined. To decide automatically
whether a part matches with the user input or not, it is com-
pared to certain value ranges. These can be entered when the
program is started.

At first, the user has to decide how many categories should
be taken into consideration during the search. In the next step,
it has to be chosen, in which categories should be investigat-
ed. Finally, the ranges of every category in their appropriate
units are necessary, to complete the input information. If the
corresponding parameter of the current part is within these
user-defined limits, the query counts as a match. If the user
defined the parameters for several categories, all checked
categories must be valid, to find an overall match displayed
in the shell. For proper results, the input has to be adapted to
the physical units of each category.

The following list shows all 56 categories, and their related
units:

166

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

1. Size in x-direction in mm
2. Size in y-direction in mm
3. Size in z-direction in mm
4. Moment of inertia xx in kg*m²
5. Moment of inertia xy in kg*m²
6. Moment of inertia xz in kg*m²
7. Moment of inertia yx in kg*m²
8. Moment of inertia yy in kg*m²
9. Moment of inertia yz in kg*m²
10. Moment of inertia zx in kg*m²
11. Moment of inertia zy in kg*m²
12. Moment of inertia zz in kg*m²
13. Shape in min/max to min/mid
14. Minimum size in mm
15. Maximum size in mm
16. Volume in mm³
17. Surface in mm²
18. Volume/surface in mm
19. Number of sketches in quantity
20. Number of points in quantity
21. Number of lines in quantity
22. Number of circles in quantity
23. Number of splines in quantity
24. Number of ellipses in quantity
25. Number of pads in quantity
26. Number of shafts in quantity
27. Number of grooves in quantity
28. Number of pockets in quantity
29. Number of ribs in quantity
30. Number of slots in quantity
31. Number of holes in quantity
32. Number of threads in quantity
33. Number of chamfers in quantity
34. Number of edge fillets in quantity
35. Number of geometrical sets in quantity
36. Number of bodies in quantity
37. Number of coincidences in quantity
38. Number of fixations in quantity
39. Number of concentricities in quantity
40. Number of tangencies in quantity
41. Number of parallelisms in quantity
42. Number of perpendicularities in quantity
43. Number of symmetries (constraint) in quantity
44. Number of angles in quantity

45. Number of lengths in quantity
46. Number of distances in quantity
47. Number of radiuses in quantity
48. Number of equidistant points in quantity
49. Number of translations in quantity
50. Number of rotations in quantity
51. Number of thickened surfaces in quantity
52. Number of symmetries (design) in quantity
53. Number of multi-sections surface in quantity
54. Number of automatic fillets in quantity
55. Number of constraints in quantity
56. Number of geometric elements in quantity
To achieve meaningful results, the user of the program

should have an idea which kind of parts he is looking for. An
easy separation strategy is e.g., the search by minimum (Cat-
egory 14) or maximum (Category 15) size. A demonstrative
example are sheet metal parts, which might have a large max-
imum size, but a very small minimum size.

The number of points, lines, and circles of one part might
be very significant for the complexity of the sketches. If a
model only has one extrusion based on one sketch, but many
points and lines, this can be an indication of a relatively so-
phisticated shape.

Another helpful search parameter is the shape in Category
13. For the computation of the range, the minimum, medium,
and maximum sizes are extracted from the XML-file, and the
mentioned parameters are calculated. The sizes are saved in
mm, so that the parameters have no physical units.

At this juncture, a small example of the detection of o-rings,
shown in Figure 1, is explained in brief. Even if the structure
tree of the o-ring is not known to the user, he or she can guess
that only one sketch with exactly one circle is necessary to
produce the shape with the command shaft. So the user can
choose four categories (19. number of sketches, 20. number
of points, 22. number of circles, and 26. number of shafts) for
his or her search. The range of every category is selected as
exactly one, because only one sketch with one point and one
circle is necessary to produce the shaft. Of course, there is a
certain probability that not all detected parts are o-rings; but
even with only four search parameters, the approximation to
an o-ring is quite good.

At this point, a more complex example should also be
demonstrated. In Figure 4, some kind of crank is depicted,
which is at this point named stabilizer. The construction of a

Figure 4. Front and side view of a stabilizer.

167

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

part like this is much more complex than the mentioned
standard parts, but the search engine can benefit exactly from
these kinds of part properties. In this example, 25 sketches (cf.
Category 19) have been necessary to gain the final shape.
Due to the fact that this part is symmetric, only the details on
one side have been created, and then mirrored at the middle.
Although the bounding box (cf. Categories 13 and 18) is
quite large in all directions, it is not filled with much material.
Thus, compared to the volume of the bounding box, this
component is very light, and the volume is very small (cf.
Category 16). A few commands that are seldomly used, like
Rib (cf. Category 29), are included in the structure, tree as
well as in the respective XML-file.

If the user has some knowledge about all the mentioned
properties, it should be easy to define the search parameters
the program category.py is using in a unique way, to sieve
out this stabilizer, or similar parts from a large database. If
there are components that contain similar features, of course
the query may deliver additional results, but all stabilizers
and engineering parts with similar properties will definitely
be displayed in the output.

The usage of this program and its accuracy becomes cer-
tainly more difficult, the more complicated the sought parts
are; but with a precise idea of the desired results in advance
of the search process, many parameters should be utilizable
for the detection of any kind of parts. After the computation
is completed, the names of the located files are displayed in
the shell.

3.2.3 Detection of similar parts

The third program match.py is comparable with the publi-
cation of Linghao et al. [33]. They present a method that
analyzes two similar CAD-files, and indicates all differences
to the user. In this way, e.g., all changes in a construction
update are recognizable at first sight. The program match.py
can instead be used for the detection of files in a database that
are identical, or similar to, a reference file. The name of this
reference has to be supplied by the user at the beginning.
When the search process is started, the source code analyses
the XML-file of the reference, in all the categories listed in
Section 3.2.2. Then, the same happens with the XML-files of
every part in the database.

The gradation of the matched parts is separated into the
three classes: (1) Perfect match, (2) Very good match, and (3)

Good match. Especially, the first class is very easy to find. If
in the database, a XML-file is detected that is equal to the
XML-file of the reference part, a perfect match is located.
More complicated is the answer to the question, how simi-
larities and differences could be identified.

The following scenario should clarify the problem. Figure
5 illustrates three simple CAD-models. On the left hand side
the reference part is shown. To both other parts, in the middle
and on the right hand side, only one feature has been added
(middle: a small rectangular pocket, right: a large rectangular
pad). But nevertheless, the part in the middle can be identi-
fied as a very similar match, compared to the reference part.
Despite the fact that to the model on the right hand side, also
only one feature has been added, this one feature changed the
appearance of the part heavily, and it cannot be interpreted as
a very good, or a good match any more. So the program
match.py has the purpose of locating such differences, and
only finding perfect, very good, or good matches to the refer-
ence. All other parts are skipped, and not displayed for the
user.

If the structure trees of the parts shown in Figure 5 are con-
sidered, an easy mathematical distinction between the differ-
ent categories can take place. Of course, the characteristic
physical values of both updated parts has been changed e.g.,
in volume (Category 16), and surface (Category 17). Also,
the number of graphical elements, like sketches (category 19),
points (Category 20), lines (Category 21), and constraints
(Category 55) has been modified, compared to the original
part. The only obvious variation between a very good match
(middle part) and a bad match (part on the right hand side)
can occur through a big difference in sizes (Categories 1, 2, 3,
13, 14 and 15). While the part in the middle has exactly the
sizes of the reference, the measurements of the model on the
right are much larger, compared to the original dimensions.

The program match.py takes advantage of this fact. The
deviation of every category is measured by the analysis of
both values. If the divergence is very small, an internal coun-
ter is raised by the value of one. If all categories of the exam-
ined part are identical with the reference, the part is classified
as a perfect match. If all categories except three or less are
identical, the part belongs to the category with very good
matches. All parts with similar categories between three and
five count only as good matches.

Also, the problem of a similar category is not easy to solve.

Figure 5. A reference part with two similar matches.

168

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

If for example, the maximum measurements are considered, a
variety in the range of 5 mm is identified as a similar match,
and the counter is raised by one. Thus, a potential candidate
for a very good match might be 5 mm smaller or larger in
every direction, to count as a similarity. The same principle is
used for the categories dealing with geometric primitives.
The number of points can vary by three, while the number of
lines might differ not more than by two, to count as a similar
category.

If again the stabilizer shown in Figure 4 is considered as a
reference part and in the database another component with
the same dimensions and outer shape is contained, which has
only the difference that the through-hole drillings do not exist,
the algorithm detects that component as a good match. The
internal approach of the source code is exactly the same, as
for simple parts. Of course, the volume and the surface are a
little bit different, but, compared to the same sizes and the
large dimensions, the variation is very small. Due to the mir-
roring, also the number of sketches will increase only by one,
as well as the number of circles. Nevertheless, it will not
change the fact that the overall similarity between both parts
is quite large, and the program will identify a stabilizer with
filled holes as a good match.

With this approach, the variation of CAD-models in shape
and other physical properties has been transferred to a math-
ematical analysis system, which allows an automatized com-
parison of technical components. Also this program runs,
after the user input, independently and without any further
human assistance.

4. Performance

In this section, the performance of the programs is dis-
cussed. For the intended application in industry with large
amounts of data, the running times, the necessary computa-
tion capacities, and manpower for handling are important.
Exact results, after an elaborate test of every program with

many CAD-models, are presented by Vadlamani [34]. Here
in this publication only some keywords are mentioned.

The first important characteristic is the ability for an inde-
pendent processing of every program. That implies that for
the control of the software, no human-computer interaction is
needed. The only necessary operation is the start preparation,
before the actual process of examination takes place. Of
course the path of the CAD-models and the folder of the da-
tabase, respectively, must be entered into the program. Then,
no matter how many parts have to be machined down, each
of the four presented programs runs without any further assis-
tance.

By far the most complex operations are executed by tree.py,
and therefore it is the most time-consuming program. As
already mentioned in Section 3.1, every part has to be opened
in CATIA, and the physical properties, as well as the struc-
ture trees, have to be outsourced to the XML-files. Thus the
speed of the processing depends on the connection between
CATIA and Python, and the execution times of the different
commands. Some tests with a only few parts showed that the
outsourcing of ten parts takes approximately one minute,
depending on the complexity of the models. Starting with this
parameter, the transfer of one million parts from CATPart- to
XML-file would take about 70 days of nonstop processing, if
only one computer is used. The performance values of whole
datacenters, including the application of parallel algorithms,
would be of great interest.

In Figure 6, two diagrams are shown, which visualize the
performance of the program tree.py. The left one shows, with
the help of the left ordinate, the processing time the program
needs to create the XML-file for one part, of the size depicted
on the abscissa. The blue graph shows the behaviour of the
software, depending on the increasing memory space in kilo-
byte. The ordinate on the right hand side contains an indica-
tion of the sizes of the created XML-files, also depending on
the input file. Here it can be recognized that the XML-file

Figure 6. Performance of tree.py.

169

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

only needs a fraction of the space that is necessary for the
initial CATPart-file.

The second diagram on the right has been created to show
the performance for large databases. The scale on both axes
is logarithmic, and it shows the computation time in seconds,
over the number of input parts changed to XML-files. The
three graphs indicate three different part sizes that are as-
sumed to be constant for all the parts in the database. In reali-
ty, usually a mix of small and large parts is contained in a
database of e.g., a company, and the behaviour of the pro-
gram would indeed range between the red and the green line.
At this point, it should also be considered that these results
are related to one computer. If a company is transferring a
database of several million parts to XML-files, not one, but
many computers should be used, which might have even
higher efficiencies.

The other programs norm.py, category.py, and match.py
are all based on the investigation of the XML-files. These are
only text-based and therefore easily searchable. Due to the
quantity of only a few seconds for many parts, the processing
time can be neglected, and only the indication and the
printout, respectively, of maybe thousands of results might
take some capacities. The reason for the fast execution is
caused by the size of the XML-files. While the original
CATPart-files are many kilobytes in size, the XML-files only
need fractions of this memory. The o-ring in Figure 1 is of
59KB size. The respective XML-file is of just 2 KB. Larger
and more sophisticated CAD-models might reach a memory
of several megabytes, with correspondingly sized XML-files.

The CATPart-file of the stabilizer depicted in Figure 4 oc-
cupies 559 KB, while the XML-file is only 28 KB large.
Nonetheless, the computation times of all three search pro-
grams are not the critical values. Due to the text-based search,
the investigation of the XML-files in a large database takes
for each program and one related query only a fraction of the
time the program tree.py needs, and can therefore be disre-
garded. Even if a user needs to start several attempts to find a
product group with the program category.py, the algorithm
only needs seconds to a few minutes, always depending on
the number of XML-files.

In summary, the usability of the suggested software for in-
dustrial application can be evaluated positively. Even if huge
data should be treated, the automatic execution allows an
independent accomplishment of all programs.

5. Comparison

At this point, the advantages, as well as the disadvantages
of every program should be considered. The greatest benefit
of the search engines is their independence from the CAD-
software, as long as the outsourcing of any needed infor-
mation has taken place previously. Thus, the usage of a li-
cense, which is quite expensive, is not necessary any more,
after the process. As already mentioned in Section 4, the pro-
cessing times, and therefore the industrial applicability, is

similar for every search program, and can be disregarded.
Nevertheless, the properties of the three search programs

depend on the location purposes of data. The scope of the
first program norm.py is self-explanatory. If the user wants to
filter special standard parts from a large database, all three
programs could be used; but for more exact results, the first
one is preferred. A big handicap is the search algorithm,
which examines only the geometric primitives, the features of
the CAD-model, and the physical properties of the parts, but
not the actual shape, or the quality of the numeric values. As
a result, also parts could be matched, which are not searched
intendedly. The applicability of this search strategy becomes
more prone to errors, the more complicated the parts are.
Also, the adding of more details to a standard part could be
problematic, because simultaneously the structure tree gets
filled with more sketches and in particular constraints (cf.
Figure 3).

The usage of the second program category.py can also be-
come more or less difficult. To search with many categories
and parameters at the same time, an exact vision of the de-
sired results should exist, before the actual query is executed.
If e.g., the number of certain features are not known in the
first place, the search parameters have to be coarsened, which
leads to a poor filtering, and thus to too many results. Of
course, also the structure of the database plays a key role. If a
company is specialized in a certain product group, many
CAD-models might look quite similar. Then, the number of
features and the whole structure trees will appear with the
same characteristics, and a meaningful sieving becomes more
complex. But the program category.py is still a powerful tool.
If too many results are displayed, an additional refined itera-
tion might become necessary.

The fields of application for the third program match.py are
also widespread. Of course, a big disadvantage is the necessi-
ty of a reference part. If a special component is to be located,
and only the shape of the part, but not the model is known,
the program category.py has to be preferred. Another dubious
factor is the mechanism for the recognition of similarities
between the reference and the current part in the database. If
the user wants to locate less similar models, one option could
be a manual adjustment of the ranges described in Section
3.2.3. In the next segment, the possible tasks for an im-
provement of this software are named.

6. Future work

A suitable possibility for the expansion of the software pre-
sented here is certainly the transfer to other popular CAD
systems. CATIA has been chosen, because it provides a con-
venient connectivity and automatability with Python. In spite
of that, software like Inventor, NX, or Pro/E possesses simi-
lar functionalities, and the ideas of the methods are also real-
izable with other programs. Also, for the usage of the XML
standard, some alternatives exist. An important aspect should
be the improvement of the applicability in industry with huge

170

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

amounts of data, and the reduction of the processing times,
and memory capacities. The keyword of parallel computing
has already been mentioned, to represent one possible at-
tempt. Once again, to the documentation of Vadlamani is
referred to [34], in which the source codes of all programs
have been analyzed.

Furthermore, every program could be improved and ad-
justed, as well. While the improvement of the computation
time should be focus on tree.py, the first search engine
norm.py could easily be extended by the addition of other
standard or more complex parts. Here especially, the several
ways of construction of one part could be considered, and
analyzed in detail, to realize more ways of implementation.

The program category.py is less extensible, but the search
strategies could be developed in detail. The most complicated,
and therefore most analyzable program is match.py. The
automatic recognition of features and similarities, respective-
ly, can be considered as research areas in themselves, where
many other possibilities could be taken into account. One
alternative is support by the analysis of two-dimensional
images of every part. The overall target is the automatic clas-
sification of CAD-models, with many alternatives to search
engines.

7. Summary

In this publication, the state of the art of research areas like
data mining and automatic feature recognition has first been
presented. Beyond this, a method consisting of four compre-
hensive programs that can be separated into one preparation
code, and three search engines for different fields of applica-
tion, have been described. For the implementation of the
strategies, the CAD-software CATIA V5 and the open source
programming language Python have been used. The analysis
of the performance, as well as the advantages and the disad-
vantages of every program, concludes that the intended in-
dustrial applicability with large amounts of data is indeed
realizable and economical, in relation to the time, memory
capacities, and necessary manpower. Nevertheless, all pro-
grams are software prototypes, which are in certain cases
fault-prone and improvable.

References

[1] Fayyad UM, Piatetsky-Shapiro G, Smyth P. Advances in

knowledge discovery and data mining. 1st ed. Menlo Park:

American Association for Artificial Intelligence; c1996. Chap-

ter 1, From data mining to knowledge discovery: an overview;

p. 1-34.

[2] Fayyad UM, Piatetsky-Shapiro G, Smyth P. From datamining to

knowledge discovery in databases. Artifical Intelligence Maga-

zine. 1996; 17(3): 37-54.

[3] Frawley WJ, Piatetsky-Shapiro G, Matheus CJ. Knowledge

discovery in databases: an overview. Artificial Intelligence

Magazine. 1992; 13(3): 57-70.

[4] Petersohn H. Data mining - verfahren, prozesse,

anwendungsarchitektur. 1st ed. Munich: Oldenbourg

Wissenschaftsverlag GmbH; 2005. 342 p.

[5] Gorunescu F. Data mining - concepts, models and techniques.

1st ed. Berlin Heidelberg: Springer Verlag; 2011. 357 p.

[6] Hilderman RJ, Hamilton HJ. Knowledge discovery and interest-

ingness measures: a survey. 1st ed. Regina: Department of

Computer Science, University of Regina; 1999. 27 p.

[7] Vajna S, Weber C, Bley H, Zeman K. CAx für ingenieure - eine

praxisbezogene einführung. 2nd ed. Berlin Heidelberg: Springer

Verlag; 2009. 564 p.

[8] Kornprobst P. Catia v5 - volumenmodellierung grundlagen und

methodik in über 100 konstruktionsbeispielen. 1st ed. Munich:

Carl Hanser Verlag; 2007. 300 p.

[9] Ester M, Kriegel H-P, Sander J. Spatial data mining: a database

approach. In: 5th International Symposium on Large Spatial Da-

tabases; 1997 Jul 15-18; Berlin, Germany; p. 47-66.

[10] Haffey M, Duffy A. Knowledge discovery and data mining

within a design environment. From Knowledge Intensive

CAD to Knowledge Intensive Engineering. 2002; 79: 59-74.

[11] Angkasith V. An intelligent design retrieval system for mod-

ule-based product. 1st ed. Columbia: Faculty of the Graduate

School, University of Missouri-Columbia; 2004. 269 p.

[12] Kizu H, Yamamoto J, Takeda T, Gyohten K, Sueda N. 2D

CAD data mining based on spatial relation. In: 10th Interna-

tional Conference on Document Analysis and Recognition;

2009 Jul 26-29; Barcelona, Spain; p. 326-330.

[13] Harding JA, Shabaz M, Srinivas S, Kusiak A. Data mining in

manufacturing: a review. Journal of Manufacturing Science

and Engineering. 2006; 128(4): 969-976.

[14] Babic B, Nesic N, Miljkovic Z. A review of automated feature

recognition with rule-based pattern recognition. Computers in

Industry. 2008; 59(4): 321-337.

[15] Iyer N, Jayanti S, Lou K, Kalyaranaman Y, Ramani K. Three-

dimensional shape searching: state-of-the-art review and fu-

ture trends. Computer-Aided Design. 2005; 37(5): 509-530.

[16] Min J, Bowyer KW. Improved range image segmentation by

analyzing surface fit patterns. Computer Vision and Image

Understanding. 2005; 97(2): 242-258.

[17] Cucchiara R, Lamma E, Mello P, Milano M, Piccardi M. 3D

object recognition by VC-graphs and interactive constrain sat-

isfaction. In: 10th International Conference on Image Analysis

and Processing; 1999 Sep 27-29; Venice, Italy; p. 508-513.

[18] Flynn PJ, Jain AK. CAD-based computer vision: from CAD

models to relational graphs. Transactions on Pattern Analysis

and Machine Intelligence. 1991; 13(2): 114-132.

[19] Cybenko G, Bhasin A, Cohen KD. Pattern recognition of 3D

CAD objects: towards an electronic yellow pages of mechani-

cal parts. International Journal of Smart Engineering System

Design. 1997; 1(1): 1-13.

[20] Ip CY, Regli WC. Manufacturing classification of CAD mod-

els using curvature and SVMs. In: International Conference on

Shape Modeling and Applications; 2005 Jun 15-17; Cam-

bridge, MA; p. 363-367.

[21] Horváth L, Rudas IJ. Self adaptive product definition using

captured specification and knowledge. In: 5th International

171

 R. Roj / Journal of Computational Design and Engineering Vol. 1, No. 3 (2014) 161~172

Symposium on Logistics and Industrial Informatics; 2013 Sep

5-7; Wildau, Germany; p. 17-22.

[22] Min P, Halderman JA, Kazhdan M, Funkhouser TA. Early

experiences with a 3D model search engine. In: 8th Interna-

tional Conference on 3D Web Technology; 2003 Mar 09-12;

St. Malo, France; p. 7-18.

[23] Wei L, Yuanjun H. Representation and retrieval of 3D CAD

models in parts library. International Journal of Advanced

Manufacturing Technology. 2008; 36(9-10): 950-958.

[24] Ansary TF, Daoudi M, Vandeborre J-P. A Bayesian 3-D

search engine using adaptive views clustering. Transactions on

Multimedia. 2007; 9(1): 78-88.

[25] Princeton University [Internet]. Princeton: Princeton Universi-

ty, Computer Science Department, Graphics & Geometry

Group, Princeton Shape Retrieval and Analysis Group; c2013

[cited 2013 Nov 29]. Available from:

 http://gfx.cs.princeton.edu/proj/shape/

[26] Min P. A 3D model search engine. 1st ed. Princeton: Princeton

University, Department of Computer Science; 2005.139 p.

[27] Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A,

Dobkin D, Jacobs D. A search engine for 3D models. Transac-

tions on Graphics 2003; 22(1): 83-105.

[28] Michalik P, Štofa J, Zolotová I. Testing the properties of k-

means algorithm for data mining applications. In: 5th Interna-

tional Symposium on Logistics and Industrial Informatics;

2013 Sep 5-7; Wildau, Germany; p. 99-102.

[29] Wang H-P, Chang H. Automated classification and coding

based on extracted surface features in a CAD data base. Inter-

national Journal of Advanced Manufacturing Technology.

1987; 2(1): 25-38.

[30] Siemens [Internet]. Cologne: Siemens Geolus Search, Search

Engine for 3D Data; c2013 [cited 2013 Nov 29]. Available

from:

http://www.plm.automation.siemens.com/de_de/products/ope

n/geolus/index.shtml

[31] Lino [Internet]. Mainz: Lino simus classmate, Software für das

Daten-Prozess-Management (DPM); c2013 [cited 2013 Nov

29]. Available from: http://www.lino.de/simus-classmate.html

[32] CADENAS [Internet]. Augsburg: CADENAS, Strategisches

Teilemanagement, Purchineering, Geometrische

Ähnlichkeitssuche; c2013 [cited 2013 Nov 29]. Available

from: http://www.cadenas.de/produkte

[33] Linghao Z, Dongming G, Hang G. A method to analyze the

difference of 3-D cad model files based on feature extraction.

Journal of Mechanical Science and Technology. 2011; 25(4):

971-976.

[34] Vadlamani S. A performance validation and improvement of

three different search engines for CAD-models using Python

and CATIA V5. 1st ed. Wuppertal: University of Wuppertal,

Department of Mechanical Engineering Informatics; 2014. 32

p.

172

