• Title/Summary/Keyword: Transparent conductive coatings

Search Result 22, Processing Time 0.031 seconds

Investigation of Transparent Conductive Oxide Films Deposited by Co-sputtering of ITO and AZO (ITO와 AZO 동시 증착법으로 제조된 투명전도막의 특성 연구)

  • Kim, Dong-Ho;Kim, Hye-Ri;Lee, Sung-Hun;Byon, Eung-Sun;Lee, Gun-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.128-132
    • /
    • 2009
  • Transparent conducting thin films of indium tin oxide(ITO) co-sputtered with aluminum-doped zinc oxide(AZO) were deposited on glass substrate by dual magnetron sputtering. It was found that the electrical properties and structural characteristics of the films are significantly changed according to the sputtering power of the AZO target. The IAZTO film prepared with D.C power of ITO at 100 W and R.F power of AZO at 50 W shows an electrical resistivity of $4.6{\times}10^{-4}{\Omega}{\cdot}cm$ and a sheet resistance of $30{\Omega}/{\square}$ (for 150 nm thick). Besides of the improvement of the electrical properties, compared to the ITO films deposited at the same process conditions, the IAZTO films have very smooth surface, which is due to the amorphous nature of the films. However, the electrical conductivity of the IAZTO films was found to be deteriorated along with the crystallization in case of the high temperature deposition (above $310^{\circ}C$). In this work, high quality amorphous transparent conductive oxide layers could be obtained by mixing AZO with ITO, indicating possible use of IAZTO films as the transparent electrodes in OLED and flexible display devices.

Doping-free Transparent Conducting Schottky Type Heterojunction Solar Cells

  • Kim, Joon-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.209-209
    • /
    • 2012
  • High-efficient transparent conductive oxide (TCO) film-embedding Si heterojunction solar cells were fabricated. An additional doping was not applied for heterojunction solar cells due to the spontaneous junction formation between TCO films and an n-type Si substrate. Three different TCO coatings were formed by sputtering method for an Al-doped ZnO (AZO) film, an indium-tin-oxide (ITO) film and double stacks of ITO/AZO films. An improved crystalline ITO film was grown on an AZO template upon hetero-epitaxial growth. This double TCO films-embedding Si heterojunction solar cell provided significantly enhanced efficiency of 9.23% as compared to the single TCO/Si devices. The effective arrangement of TCO films (ITO/AZO) provides benefits of a lower front contact resistance and a smaller band offset to Si leading enhanced photovoltaic performances. This demonstrates a potential scheme of the effective TCO film-embedding heterojunction Si solar cells.

  • PDF

The Characteristics of Ga-doped ZnO Transparent Thin Films by using Multilayer (다층박막을 이용한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Bong-Seok;Lee, Kyu-Il;Kang, Hyun-Il;Lee, Tae-Yong;Oh, Su-Young;Lee, Jong-Hwan;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1044-1048
    • /
    • 2007
  • With development of electronic products the demands for miniaturization and weight-lightening have increased until a recent date. Accordingly, The effort to substitute glass substrates was widely made. However, polymer substrates have weak point that substrates were damaged at high temperature. In this paper, we deposited transparent conductive film at low temperature. And we inserted Au thin film between oxide to compensate for deteriorated electrical characteristics. Ga-doped ZnO(GZO) multilayer coatings were deposited on glass substrate by DC sputtering. The optimization of deposition conditions of both AZO and Au layers were performed to obtain better electrical and optical characteristics in advance. We presumed that the properties of multilayer were affected by the deposition process of both GZO and Au layers. The best multilayer coating exhibited the resistivity of $2.72{\times}10^{-3}\;{\Omega}-cm$ and transmittance of 77 %. From these results, we can confirm a possibility of the application as transparent conductive electrodes.

Transparent Conductive ITO thin flims for Liquid Crystal Display (액정표시소자용 ITO 투명전극의 특성에 관한 연구)

  • Kim, H.S.;Kim, D.Y.;Choi, B.K.;Koo, K.W.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1553-1555
    • /
    • 2003
  • Coatings on glass with highly transparent conducting oxide films(TCOs) are performed mostly by using indium tin oxide(ITO). This Oxide material is very common for applications where both high electrical conductivity. Photovoltaic cells, transparent electrical heater, selective optical filter, and a optical transmittance are essential. In this study, ITO thin films were deposited on $SiO_2$/soda-line glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy(AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-800nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Effect of deposition parameters on structure of ZnO films deposited by an DC Arc Plasmatron

  • Penkov, Oleksiy V.;Chun, Se-Min;Kang, In-Jae;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.255-255
    • /
    • 2011
  • Zinc oxide based thin films have been extensively studied in recent several years because they have very interesting properties and zinc oxide is non-poisonous, abundant and cheap material. ZnO films are employed in different applications like transparent conductive layers in solar cells, protective coatings and so on. Wide industrial application of the ZnO films requires of development of cheap, effective and scalable technology. Typically used technologies don't completely satisfy the industrial requirements. In the present work, we studied effect of the deposition parameters on the structure and properties of ZnO films deposited by DC arc plasmatron. The varied parameters were gas flow rates, precursor composition, substrate temperature and post-deposition annealing temperature. Vapor of Zinc acetylacetone was used as source materials, oxygen was used as working gas and argon was used as the cathode protective gas and a transport gas for the vapor. The plasmatron power was varied in the range of 700-1500 watts. Flow rate of the gases and substrate temperature rate were varied in the wide range to optimize the properties of the deposited coatings. After deposition films were annealed in the hydrogen atmosphere in the wide range of temperatures. Structure of coatings was investigated using XRD and SEM. Chemical composition was analyzed using x-ray photoelectron spectroscopy. Sheet conductivity was measured by 4-point probe method. Optical properties of the transparent ZnO-based coatings were studied by the spectroscopy. It was shown that deposition by a DC Arc plasmatron can be used for low-cost production of zinc oxide films with good optical and electrical properties. Increasing of the oxygen content in the gas mixture during deposition allow to obtain high-resistive protective and insulation coatings with high adhesion to the metallic surface.

  • PDF

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

Application and Processes for Sputtered ITO Films (스퍼터 ITO박막의 제조 공정 이해 및 활용)

  • Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.55-71
    • /
    • 2017
  • Transparent Conductive Oxide (TCO), especially Indium Tin Oxide (ITO) films are almost prepared by DC magnetron sputtering because of the advantage of obtaining homogeneous large area coatings with high reproducibility. The purpose of this report is describe a detailed investigation of key factors dominating electrical and structural properties of sputtered ITO films. It was confirmed that crystallinity and electrical properties of ITO films were strongly depend on the sputtering pressure and kinetic energy of sputtered particles which are expected to have a close relation with the transport processes between target and substrate. And also, nodule formation on the ITO target was suppressed by both $CaCO_3$ addition and decreasing micro-pore in the target. On the other hand, we focused on the characteristics of amorphous TCO film to use as transparent electrode for various applications. To realize high thermoelectric performance, it was tried to control both high electrical conductivity and low thermal conductivity for the amorphous IZO:Sn films.

Characteristics of Ga-doped ZnO transparent thin films by using multilayer (다층박막을 이용한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Bong-Seok;Hwang, Hyun-Suk;Lee, Kyu-Il;Jeong, Kyu-Won;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.313-314
    • /
    • 2007
  • Ga-doped ZnO(GZO) multilayer coatings were prepared on glass by DC sputtering. Optimization of the deposition conditions of both AZO and Au layers were performed for better electrical and optical characteristics. The properties of multilayer were affected by the deposition process of both GZO and Au layers. The best multilayer coating exhibits low resistivity of $2.72{\times}10^{-3}\;{\Omega}-cm$ and transmittance of 77%. From these results, we can confirm a possibility of the application as transparent conductive electrodes.

  • PDF