DOI QR코드

DOI QR Code

Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering

  • 정종국 (한국공학대학교 신소재공학과) ;
  • 임실묵 (한국공학대학교 신소재공학과)
  • Jung, Jong-Gook (Department of Advanced Materials Engineering, Tech University of Korea) ;
  • Lim, Sil-Mook (Department of Advanced Materials Engineering, Tech University of Korea)
  • 투고 : 2022.11.16
  • 심사 : 2022.11.25
  • 발행 : 2022.12.31

초록

Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

키워드

참고문헌

  1. B. Lin, S. P. Li, Z. C. Cao, Y. Zhang, X. M. Jiang, Theoretical modeling and experimental analysis of single-grain scratching mechanism of fused quartz glass, J. Mat. Pro. Tech., 293 (2021) 117090. https://doi.org/10.1016/j.jmatprotec.2021.117090
  2. B. A. Moys, The theory of double-layer antireflection coatings, Thin Solid Films, 21 (1974) 145-157. https://doi.org/10.1016/0040-6090(74)90097-2
  3. C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating, J. Non-Cryst. Sol., 216 (1997) 77-82. https://doi.org/10.1016/S0022-3093(97)00175-0
  4. J. Zhao, M. A. Green, Optimized antireflection coatings for high-efficiency silicon solar cells, IEEE Trans. Electron Dev., 38 (1991) 1925-1934. https://doi.org/10.1109/16.119035
  5. H. Y. Hsueh, H. Y. Chen, M. S. She, C. K. Chen, R. M. Ho, S. Gwo, H. Hasegawa, E. L. Thomas, Inorganic gyroid with exceptionally low refractive index form block Co-polymer templating, Nano Lett., 10 (2010) 4994-5000. https://doi.org/10.1021/nl103104w
  6. N. Ozer, M. D Rubin, C. M. Lampert, Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison, Sol. Energy Mater. Sol. Cells, 40 (1996) 285-296. https://doi.org/10.1016/0927-0248(95)00147-6
  7. G. Agarwal, G. B. Reddy, Study of surface morphology and optical properties of Nb2O5 thin films with annealing, J. Mater. Sci. Mater. Electron., 16 (2005) 21-24.
  8. P. L. Provenzano, G. R. Jindal, J. R. Sweet, W. B. White, Flame-excited luminescence in the oxides Ta2O3, Nb2O5, TiO2, and SnO2, J. Lumin., 92(4) (2001) 297-305. https://doi.org/10.1016/S0022-2313(00)00264-7
  9. D. W. Kim, The Properties of multi-layered optical thin films fabricated by pulsed dc magneteron sputtering, J. Korean. Inst. Surf. Eng., 52 (2019) 211-226.
  10. Y. S. Cho, H. Jung, S. Yang, H. G. Kim. A study on the improvement of ESD defect in charge dissipation layer coating process with different chuck material, Inst. Elec. Info, Eng., 324 (2021) 126-129.
  11. Y. B. Son, N. Y. Kim, J. H. Oh, C. K. Hwangbo, Design and deposition of tow-layer antireflection and antisatatic coating using a TiN thin film, J. Opt. Soc. Kor., 11 (2000) 323-329.
  12. W. S. Baik, S. M. Lee, J. G. Jung, S. B. Kim, N. E. Byun Korea Patnet (2020) KR 10-21208190000.
  13. J. S, In, B. G. Jin, D. Y Jeong, Improvement of electrostatic damage resistance of photomasks with conductive ITO film fabricated using UAPS (UV-Assisted-Partial-Strip) method, J. of the Kor. Ceram. Soc., 58 (2021) 623-629. https://doi.org/10.1007/s43207-021-00138-0
  14. M. H. Kim, J. H. Jung, P. K. Song, electrical properties of ITO thin film deposited by reactive dc magnetron sputtering using various sn concentration target, J. Kor. Inst. Sunf. Eng., 47 (2014) 311-315. https://doi.org/10.5695/JKISE.2014.47.6.311
  15. E. Paparazzo, XPS and auger spectroscopy studies on mixtures of The oxides SiO2, Al2O3, Fe2O3, and Cr2O3, J. Electron Spectrosc. Relat. Phenom., 43 (1987) 97-112. https://doi.org/10.1016/0368-2048(87)80022-1
  16. N. Ozer, M. D. Rubin, C. M. Lampert, Optical and electrochemical characteristics of niobium oxide films prepared by sol-gel process and magnetron sputtering A comparison, Sol. Eneg, Mat., 40 (1996) 285-296. https://doi.org/10.1016/0927-0248(95)00147-6
  17. V. Sittinger, A. Pflug, W. Wemer, C. Rikers, M. Vergohl, A. Kaiser, B. Szyszka, Production of MF and DC-pulse sputtered antireflective/anti-static optical interference coatings using a large area in-line coater, Thin Solid Films, 502 (2006) 175-180. https://doi.org/10.1016/j.tsf.2005.07.270
  18. A. S. A. C. Diniz, The effects of various annealing regimes on the microstructure and physical properties of ITO (In2O3:Sn) thin films deposited by electron beam evaporation for solar energy applications, Renewable Energy, 36 (2011) 1153-1165. https://doi.org/10.1016/j.renene.2010.09.005
  19. D. I. Kim, Improvement of structural and optoelectrical properties by post-deposition electron beam annealing of ITO thin films, Renewable Energy, 36 (2011) 525-528. https://doi.org/10.1016/j.renene.2010.06.031
  20. F. J. Pern, R. Noufi, B. To, C. DeHart, X. Li, S. H. Glick, Degradation of ZnO-based window layers for thin-film CIGS by accelerated stress exposures, Proc. SPIE Int. Soc. Opt. Eng., 7048 (2008) 1-14.