• Title/Summary/Keyword: Antistatic coatings

Search Result 5, Processing Time 0.021 seconds

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

An Antireflection and Antistatic Coatings for CRTs using PEDOT (PEDOT를 이용한 CRT용 반사방지 및 대전방지 코팅)

  • 김태영;김종은;이보현;서광석;김진열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2002
  • A method for designing antireflection (AR) and antistatic (AS) coating layer by the use of conducting polymer as an electrically conductive transparent layer is proposed. The conducting AR coating is composed of four-layer with alternating high and low refractive index layer: silicon dioxide (n=1.44) and titanium dioxide (n=2.02) prepared at low temperature by sol-gel method are used as the low and high refractive index layer, respectively. The poly(3,4-ethylenedioxythiophene) which has the surface resistivity of 10$^4$Ω/$\square$ is used as a conductive layer. Optical constant of each ARAS coating layers such as refractive index and optical thickness were measured by 7he spectroscopic ellipsometer and from the measured optical constants the spectral properties such as reflectance and transmittance were simulated in the risible region. The reflectance of ARAS films on glass substrate was below 1 %R and the transmittance was higher than 95 % in the visible wavelength (400-700 nm). The measured AR spectral properties was very similar to its simulated results.

Antistatic Behavior of UV-curable Multilayer Coating Containing Organic and Inorganic Conducting Materials (유·무기 전도성 물질을 함유한 UV 경화형 다층 코팅의 대전방지 특성)

  • Kim, Hwa-Suk;Kim, Hyun-Kyoung;Kim, Yang-Bae;Hong, Jin-Who
    • Journal of Adhesion and Interface
    • /
    • v.3 no.3
    • /
    • pp.22-29
    • /
    • 2002
  • UV curable coating system described here consists of double layers, namely under layer and top laser coatings. The former consists of organic-inorganic conductive materials and the latter consists of multifunctional acrylates. Transparent double layer coatings were prepared on the transparent substrates i.e. PMMA, PC, PET etc. by the wet and wet coating procedure. Their surface resistances and film properties were measured as a function of the top layer thickness and relative humidity. As the thickness of the top layer was less than $10{\mu}m$, the surface resistance in the range of $10^8{\sim}10^{10}{\Omega}/cm^2$ was obtained. The surface properties of the two-layer coating were remarkably improved compared with the single layer coating. The effects of migration of conducting materials on the film properties of multilayer coating were investigated by using contact angle and Fourier transform infrared/attenuated total reflection(FT-IR/ATR). It was found that the migration of dopant(dodecyl benzenesulfonic acid, DBSA) molecules were occurred from film-substrate interface to film-air interface in the organic conductive coating system but not in the inorganic one.

  • PDF

Fabrication of Two-layer Antireflection Coatings Using Absorbing layer (흡수층을 이용한 2층 무반사 박막의 제작)

  • 손영배;황보창권;오정홍;김남영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.170-171
    • /
    • 2000
  • 현재 사용하고 있는 디스플레이 장치에는 표면에 무반사(antireflection), 무정전(antistatic) 코팅이 되어 있다. 이것은 전기적으로 음극선관(CRT)에서 발생되는 전자에 의해 표면에 생기는 전하의 적층을 제거하여 정전기를 방지하고 인체에 유해한 전자기파를 차단하는 무정전 기능과, 광학적으로 디스플레이 장치 표면에서 외부의 조명등과 같은 빛의 반사를 줄여 내부에서 나오는 정보(빛)가 보다 더 눈에 선명하게 들어오도록 해준다. 무반사 무정전 코팅의 투과 전도층으로는 비저항값이 낮고 가시광선 영역에서 굴절률이 높고 흡수가 적어 투과율이 높은 indium tin oxide(ITO)가 널리 연구, 사용되어 왔다. 이러한 ITO 박막 대신에 TiN 박막을 사용하여 그 위에 유전체층을 증착하여 단 2층으로 무반사 무정전 코팅을 제작 할 수 있다. TiN 박막은 절삭공구 등의 표면에 마모방지용 코팅재료로서 사용되고 있고, 부착력이 우수하며 화학적 안정성이 뛰어나 수명이 긴 박막을 제작 할 수 있는 장점을 가지고 있다. 또한 가시광선 영역에서 흡수로 인해 투과율이 ITO에 비해 상대적으로 낮지만 이점이 오히려 명도대비(contrast)의 향상을 가져온다. (중략)

  • PDF

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF