• Title/Summary/Keyword: Translational motion

Search Result 221, Processing Time 0.023 seconds

Accelerated Test Design for Crankshaft Reliability Estimation

  • Jung, D.H.;Pyun, Y.S.;Gafurov, A.;Chung, W.S.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.109-118
    • /
    • 2009
  • Crankshaft, the core element of the engine of a vehicle, transforms the translational motion generated by combustion to rotational motion. Its failure will cause serious damage to the engine so its reliability verification must be performed. In this study, the S-N data of the bending and torsion fatigue limits of a crankshaft are derived. To evaluate the reliability of the crankshaft, reliability verification and analysis are performed. For the purpose of further evaluation, the bending and torsion tests of the original crankshaft are carried out, and failure mode analysis is made. The appropriate number of samples, the applied load, and the test time are computed. On the basis of the test results, Weibull analysis for the shape and scale parameters of the crankshaft is estimated. Likewise, the $B_{10}$ life under 50% of the confidence level and the MTTF are exactly calculated, and the groundwork for improving the reliability of the crankshaft is laid.

  • PDF

Design and Analysis of Loading Block of VCR Deck Mechanism (비데오 데크 메카니즘의 로딩블럭 해석 및 설계)

  • 박태원;김광배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.502-511
    • /
    • 1994
  • A video deck mechanism is composed of various cams, links, and gears, and it requires precise movement. So kinematic motion between parts should be considered to get desired movement depending on the timing chart which defines movement of each part to get desired mode. Also dynamic effects should be considered to get right tape tension and to estimate motor force required to obtain accurate motion. The design process of the deck mechanism of VCR is explained briefly. The loading block of the deck mechanism is divided into a tape translational group and a brake control group. Each group is modeled for kinematic and dynamic analysis. Finally, two groups are combined together to analyze the loading block of the deck mechanism. Results are used to understand and modify an existing design.

Design of Optimal Attitude Controller for a Launch Vehicle Using Sloshing Filter (슬로싱 필터를 이용한 발사체의 최적 자세제어기 설계)

  • Kim, Dong-Hyun;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.584-589
    • /
    • 2000
  • When the liquid tanks only partially filled and under translational acceleration, large quantities of liquid move uncontrollably inside the tanks and generate the liquid sloshing effect. Liquid sloshing effect could be a severe problem in launch vehicle stability and control if the liquid modes of motion couple significantly with the launch vehicle's normal modes of motion. Several methods have been employed to reduce the effect of sloshing, such as introducing baffles inside the tanks or dividing a large tank into a number of smaller ones. These techniques, although helpful in some cases, do not succeed in canceling the sloshing effects. In this paper, An attitude controller is designed for a launch vehicle with liquid sloshing effect. Both PD controller and sloshing filter are designed for the objective. PD gains and design parameters are determined by optimal algorithm. The performance of the attitude controller is evaluated via computer simulations.

  • PDF

Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling (공중재급유를 위한 상대운동방정식 유도 및 검증)

  • Jang, Jieun;Lee, Sangjong;Ryu, Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

The Rocking Response of Rectangular Fluid Storage Tank (구형 유체 저장 Tank의 Rocking응답)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.107-114
    • /
    • 1997
  • A dynamic fluid-structure-soil interaction analysis method is developed to investigate the effects of rocking motion on the seismic response of the 3-D flexible rectangular liquid storage tanks founded on the deformable ground. The governing equation of 3-D rectangular tanks subjected to the translational and rocking motions is obtained by Rayleigh-Ritz method. The dynamic stiffness matrix of the rigid surface foundation resting on the surface of a stratum are calculated by hyperelement method. The seismic responses of a 3-D flexible tank model founded on the deformable ground is calculated by combining the governing equation of the structural motion with the dynamic stiffness matrix of the rigid surface foundation.

  • PDF

Particle filter for Correction of GPS location data of a mobile robot (이동로봇의 GPS위치 정보 보정을 위한 파티클 필터 방법)

  • Noh, Sung-Woo;Kim, Tae-Gyun;Ko, Nak-Yong;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.2
    • /
    • pp.381-389
    • /
    • 2012
  • This paper proposes a method which corrects location data of GPS for navigation of outdoor mobile robot. The method uses a Bayesian filter approach called the particle filter(PF). The method iterates two procedures: prediction and correction. The prediction procedure calculates robot location based on translational and rotational velocity data given by the robot command. It incorporates uncertainty into the predicted robot location by adding uncertainty to translational and rotational velocity command. Using the sensor characteristics of the GPS, the belief that a particle assumes true location of the robot is calculated. The resampling from the particles based on the belief constitutes the correction procedure. Since usual GPS data includes abrupt and random noise, the robot motion command based on the GPS data suffers from sudden and unexpected change, resulting in jerky robot motion. The PF reduces corruption on the GPS data and prevents unexpected location error. The proposed method is used for navigation of a mobile robot in the 2011 Robot Outdoor Navigation Competition, which was held at Gwangju on the 16-th August 2011. The method restricted the robot location error below 0.5m along the navigation of 300m length.

Clinical and Radiological Results after Arthroscopic Superior Capsular Reconstruction in Patients with Massive Irreparable Rotator Cuff Tears

  • Yoon, Jeong Yong;Kim, Paul Shinil;Jo, Chris Hyunchul
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • Background: Massive, irreparable rotator cuff tears (RCTs) are a challenging clinical problem in young patients. In recent years, arthroscopic superior capsular reconstruction (ASCR) is a popular treatment in the massive, irreparable RCTs. However, studies reporting clinical results of ASCR are rare in the literature. Methods: Between 2013 and 2015, six patients underwent ASCR. One patient treated with dermal allograft, while five patients with autogenous fascia lata graft. Demographic data, as well as preoperative and last follow-up clinical data including pain, range of motion (ROM), strength, American Shoulder and Elbow Surgeons system, the Constant system, the University of California at Los Angeles system, the Simple Shoulder Test, and the Shoulder Pain and Disability Index system were obtained. Acromiohumeral distances and Hamada classification were measured on standard anteroposterior x-ray. Results: All patients were men, and the average age was $59.5{\pm}4.18years$ (range, 53-65 years).The minimum follow-up was 18 months with a mean follow-up was $27.33{\pm}7.58months$ (range, 18-36). All patients had postoperative improvement in pain scores and functional scores. The ROM and strength did not improve after surgery. The Hamada score progressed of radiographic stage in 2 patients. In the case of dermal allograft, there was graft failure 6 weeks after ASCR. Conclusions: Our results support the ASCR as a viable treatment for surgical salvage in massive, irreparable RCTs. This treatment option may provide patients with decreased pain and increased function. And studying our case of dermal allograft failure provides opportunities to decrease graft failure in ASCR using dermal allograft.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF

Analysis on Kinematic Characteristics of the Revolute-joint-based Translational 3-DOF Parallel Mechanisms (회전관절만을 활용하는 병진 3자유도 병렬 메커니즘의 기구학 특성 분석)

  • Park, Jae-Hyun;Kim, Sung Mok;Kim, WheeKuk
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.2
    • /
    • pp.119-132
    • /
    • 2015
  • Two novel parallel mechanisms (PMs) employing two or three PaPaRR subchains are suggested. Each of those two PMs has translational 3-DOF motion and employs only revolute joints such that they could be adequate for haptic devices requiring minimal frictions. The position analyses of those two PMs are conducted. The mobility analysis, the kinematic modeling, and singularity analysis of each of two PMs are performed employing the screw theory. Then through optimal kinematic design, each of two PMs has excellent kinematic characteristics as well as useful workspace size adequate for haptic applications. In particular, by applying an additional redundantly actuated joint to the 2-PaPaRR type PM which has a closed-form position solution, it is shown that all of its parallel singularities within reachable workspace are completely removed and that its kinematic characteristics are improved.