• Title/Summary/Keyword: Transient noise

Search Result 400, Processing Time 0.03 seconds

On a Pitch Extraction of Speech Signal using Residual Signal of the Uniform Quantizer (균일양자화기의 잔여신호를 이용한 음성신호의 피치검출)

  • Bae, Myung-Jin;Han, Ki-Cheon;Cha, Jin-Jong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.36-40
    • /
    • 1997
  • In speech signal processing, it is necessary and important to detect exactly the pitch. The algorithms of pitch extraction which have been proposed until now are difficult exactly pitches over wide range speech signals. In this paper, thus, we proposed a new pitch detection algorithm that finds the fundamental period of speech signal in the residual signal quantized by the uniform quantizer as PCM. The proposed method shows little gross error of average 0.25% for clean speech and average 3.39% for SNR of 0dB. It also achieves results of the pitch contours, improving the accuracy of pitch detection in transient phonemes and noise environments.

  • PDF

A Simple Timeout Algorithm for Point-to-Multipoint ABR Service

  • Lai, Wei-Kuang;Chen, Chien-Ting;Li, Chilin
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • The ABR point-to-multipoint connection is now playing a more important role than before. Many consolidation algorithms have been proposed to solve the consolidation noise problem and the slow transient response problem. But few timeout algorithms are proposed to handle the non-responsive branches for the multicast connections. Chen’s algorithm needs exchanging control messages between switches [9]. Besides, it may mistake a responsive branch as a non-responsive branch because of fast changes in source rates, which causes wrong information in BRM cells and may lead to network congestion and data losses in the responsive branch. We propose a simple timeout algorithm which can handle the non-responsive branches without exchanging message between switches. The timeout value for each switch is computed locally. Simulation results show that the proposed timeout algorithm can efficiently handle the non-responsive branches and utilize the available bandwidth within a small period of time. In addition, our algorithm could handle the situation when the source rates change quickly.

Comparison of Speech Onset Detection Characteristics of Adaptation Algorithms for Cochlear Implant Speech Processor (인공와우 어음처리방식을 위한 적응효과 알고리즘의 음성개시점 검출 특성 비교)

  • Choi, Sung-Jin;Kim, Jin-Ho;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.25-31
    • /
    • 2008
  • It is well known that temporal information, i.e speech onset, about input speech can be represented to the response nerve signal of auditory nerve better depending on the adaptation effect occurred in the auditory nerve synapse. In addition, the performance of a speech processor of cochlear implant can be improved by the adaptation effect. In this paper, we observed the emphasis characteristic of speech onset in the recently proposed adaptation algorithm, analyzed the characteristic of performance change according to the variation of parameters and compared with transient emphasis spectral maxima (TESM) is the previous typical strategy. When observing false peaks which are generated everywhere except speech onset, in the case of the proposed model, the false peak were generated much less than in the case of the TESM and it is more distinguishable under noise.

The study of test voltage measuring system for high-power testing laboratory (대전력 시험전압 측정방법에 대한 고찰)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1038-1040
    • /
    • 2005
  • This paper describes the optimal design, construction and performance evaluation of voltage divider used in high power testing laboratory for voltage measuring system. These dividers, which are of R, C, R&C type voltage dividers, the voltage to be measured range from voltage to several ten kilovolts, the frequency of the signals has a bandwidth from DC to megaHertz Measuring transient voltage and currents in the high voltage power laboratory is generally accompanied by electromagnetic interface and induced noise. above all, the measuring capabilities of voltage measuring system are dependent upon short response time and it must be as free as possible of inductive effects. In this paper presents both characteristic of voltage divider and design of voltage measuring system.

  • PDF

Sensing and Vetoing Loud Transient Noises for the Gravitational-wave Detection

  • Jung, Pil-Jong;Kim, Keun-Young;Oh, John J.;Oh, Sang Hoon;Son, Edwin J.;Kim, Young-Min
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1197-1210
    • /
    • 2018
  • Since the first detection of gravitational-wave (GW), GW150914, September 14th 2015, the multi-messenger astronomy added a new way of observing the Universe together with electromagnetic (EM) waves and neutrinos. After two years, GW together with its EM counterpart from binary neutron stars, GW170817 and GRB170817A, has been observed. The detection of GWs opened a new window of astronomy/astrophysics and will be an important messenger to understand the Universe. In this article, we briefly review the gravitational-wave and the astrophysical sources and introduce the basic principle of the laser interferometer as a gravitational-wave detector and its noise sources to understand how the gravitational-waves are detected in the laser interferometer. Finally, we summarize the search algorithms currently used in the gravitational-wave observatories and the detector characterization algorithms used to suppress noises and to monitor data quality in order to improve the reach of the astrophysical searches.

A Study on Design of EMC Filter in the High Powered Breaker (대전력용 차단기 내의 EMC 필터 설계에 관한 연구)

  • Kim, Eun-Mi;Jeon, Mi-Hwa;Kim, Dong Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.139-142
    • /
    • 2009
  • Rapid developments in the field of electronic communication have given people's daily life much more convenience and abundance. However, making precise electrical and electronic devices and control systems lighter, smaller, and faster have caused lots of problems such as interference of external electric source, malfunction brought by electric fast transient(EFT), and influence on human body. In this research, the EMC filter in the high powered breaker was designed and fabricated as a countermeasure. The filter attenuated noise more than 30 ~ 75 dB in the range of 10 MHz ~ 1.5 GHz. And, when the EFT of 4 kV in the level 4 of IEC 61000-4-4 was induced, it was soon suppressed to 600 V.

  • PDF

Development of simulator by induced contact loss phenomenon for high-speed train operation (고속전철 주행에 따른 이선현상 모의 시뮬레이터 개발)

  • Kim, Jae-Moon;Kim, Yang-Soo;Kim, Chul-Soo;Chang, Chin-Young;Kim, Youn-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.499-503
    • /
    • 2009
  • In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated from an electrical response point of view. To analysis power line disturbance by induced contact loss phenomenon for high speed operation, a hardware Simulator which considered contact loss between contact wire and the pantograph as well as contact wire deviation is developed. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system. One of the most important needs accompanied by increasing the speed of high-speed train is reduced that an arc phenomenon by loss of contact brings out EMI. In case of a high-speed train using electrical power, as comparison with diesel rolling stock, PLD(Power Line Disturbance) such as harmonic, transient voltage and current, EMI, dummy signal injection etc usually occurs. Throughout experiment, it is verified that an arc phenomenon is brought out for simulator operation and consequently conducted noise is flowed in electric circuit by power line disturbance.

  • PDF

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test (무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지)

  • Han, Dong Ju
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-29
    • /
    • 2017
  • A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park;Soonhwi Hwang;Hwanseok Yang;Chul Hyun;Jai-ick Yoh
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.138-150
    • /
    • 2024
  • This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Introduction to Geophysical Exploration Data Denoising using Deep Learning (심층 학습을 이용한 물리탐사 자료 잡음 제거 기술 소개)

  • Caesary, Desy;Cho, AHyun;Yu, Huieun;Joung, Inseok;Song, Seo Young;Cho, Sung Oh;Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.117-130
    • /
    • 2020
  • Noises can distort acquired geophysical data, leading to their misinterpretation. Potential noises sources include anthropogenic activity, natural phenomena, and instrument noises. Conventional denoising methods such as wavelet transform and filtering techniques, are based on subjective human investigation, which is computationally inefficient and time-consuming. Recently, many researchers attempted to implement neural networks to efficiently remove noise from geophysical data. This study aims to review and analyze different types of neural networks, such as artificial neural networks, convolutional neural networks, autoencoders, residual networks, and wavelet neural networks, which are implemented to remove different types of noises including seismic, transient electromagnetic, ground-penetrating radar, and magnetotelluric surveys. The review analyzes and summarizes the key challenges in the removal of noise from geophysical data using neural network, while proposes and explains solutions to the challenges. The analysis support that the advancement in neural networks can be powerful denoising tools for geophysical data.