DOI QR코드

DOI QR Code

Optical and Thermodynamic Modeling of the Interaction Between Long-range High-power Laser and Energetic Materials

  • Kisung Park (Department of Aerospace Engineering, Seoul National University) ;
  • Soonhwi Hwang (Laser R&D Laboratory, LIG Nex1) ;
  • Hwanseok Yang (Laser R&D Laboratory, LIG Nex1) ;
  • Chul Hyun (Laser R&D Laboratory, LIG Nex1) ;
  • Jai-ick Yoh (Department of Aerospace Engineering, Seoul National University)
  • Received : 2023.12.27
  • Accepted : 2024.03.24
  • Published : 2024.04.25

Abstract

This study is essential for advancing our knowledge about the interaction between long-range high-power lasers and energetic materials, with a particular emphasis on understanding the response of a 155-mm shell under various surface irradiations, taking into account external factors such as atmospheric disturbances. The analysis addresses known limitations in understanding the use of non-realistic targets and the negligence of ambient conditions. The model employs the three-dimensional level-set method, computer-aided design (CAD)-based target design, and a message-passing interface (MPI) parallelization scheme that enables rapid calculations of the complex chemical reactions of the irradiated high explosives. Important outcomes from interaction modeling include the accurate prediction of the initiation time of ignition, transient pressure, and temperature responses with the location of the initial hot spot within the shell, and the relative magnitude of noise with and without the presence of physical ambient disturbances. The initiation time of combustion was increased by approximately a factor of two with atmospheric disturbance considered, while slower heating of the target resulted in an average temperature rise of approximately 650 K and average pressure increase of approximately 1 GPa compared to the no ambient disturbance condition. The results provide an understanding of the interaction between the high-power laser and energetic target at a long distance in an atmospheric condition.

Keywords

Acknowledgement

The authors are grateful to LIG Nex1 for providing the research grant contracted through IAAT and IOER at Seoul National University.

References

  1. E. V. Roos, J. J. Benterou, R. S. Lee, F. Roseke, and B. C. Stuart, "Femtosecond laser interaction with energetic materials," Proc. SPIE 4760, 415-423 (2002).
  2. E. S. Collins and J. L. Gottfried, "Laser-induced deflagration for the characterization of energetic materials," Propellants Explos. Pyrotech. 42, 592-602 (2017). https://doi.org/10.1002/prep.201700040
  3. F. Roeske, J. Benterou, R. Lee, and E. Roos, "Cutting and machining energetic materials with a femtosecond laser," Propellants Explos. Pyrotech. 28, 53-57 (2003). https://doi.org/10.1002/prep.200390008
  4. D. Damm and M. Maiorov, "Thermal and radiative transport analysis of laser ignition of energetic materials," Proc. SPIE 7795, 779502 (2010).
  5. A. V. Kalenskii, A. A. Zvekov, M. V. Anan'eva, I. Y. Zykov, V. G. Kriger, and B. P. Aduev, "Influence of laser wavelength on the critical energy density for initiation of energetic materials," Combust. Explos. Shock Waves 50, 333-338 (2014). https://doi.org/10.1134/S0010508214030113
  6. A. G. Korotkikh, I. V. Sorokin, E. A. Selikhova, and V. A. Arkhipov, "Effect of B, Fe, Ti, Cu nanopowders on the laser ignition of Al-based high-energy materials," Combus. Flame 222, 103-110 (2020). https://doi.org/10.1016/j.combustflame.2020.08.045
  7. M. D. Bowden, M. Cheeseman, S. L. Knowles, and R. C. Drake, "Laser initiation of energetic materials: A historical overview," Proc. SPIE 6662, 666208 (2007).
  8. V. Coffey, "High-energy lasers: New advances in defense applications," Opt. Photonics News 25, 28-35 (2014).
  9. K.-C. Lee, K.-H. Kim, and J. J. Yoh, "Modeling of high energy laser ignition of energetic materials," J. Appl. Phys. 103, 083536 (2008).
  10. A. B. Gojani and J. J. Yoh, "New ablation experiment aimed at metal expulsion at the hydrodynamic regime," Appl. Surf. Sci. 255, 9268-9272 (2009). https://doi.org/10.1016/j.apsusc.2009.07.019
  11. J. Stupl and G. Neuneck, "Assessment of long range laser weapon engagements: The case of the airborne laser," Sc. Glob. Secur. 18, 1-60 (2010). https://doi.org/10.1080/08929880903422034
  12. J. D. Majumdar and I. Manna, "Laser material processing," Inter. Mater. Rev. 56, 341-388 (2011). https://doi.org/10.1179/1743280411Y.0000000003
  13. L. Li, "The advances and characteristics of high-power diode laser materials processing," Opt. Lasers Eng. 34, 231-253 (2000). https://doi.org/10.1016/S0143-8166(00)00066-X
  14. D. J. Joe, S. Kim, J. H. Park, D. Y. Park, H. E. Lee, T. H. Im, I. Choi, R. S. Ruoff, and K. J. Lee, "Laser-material interactions for flexible applications," Adv. Mater. 29, 1606586 (2017).
  15. J. C. Collins, "An improved thermal blooming model for the laser performance code ANCHOR," M. S. Thesis, Naval Postgraduate School, CA, USA (2016).
  16. R. J. Bartell, G. P. Perram, S. T. Fiorino, S. N. Long, M. J. Houle, C. A. Rice, Z. P. Manning, D. W. Bunch, M. J. Krizo, and L. E. Gravley, "Methodology for comparing worldwide performance of diverse weight-constrained high energy laser systems," Proc. SPIE 5792, 76-87 (2005).
  17. T. Fahey, M. Islam, A. Gardi, and R. Sabatini, "Laser beam atmospheric propagation modelling for aerospace LIDAR applications," Atmosphere 12, 918 (2021).
  18. G. Masada, "Propagation characteristics of laser light under the influence of atmospheric disturbance," Tamagawa Univ. Quantum ICT Res. Inst. Bull. 11, 27-34 (2021).
  19. T. J. Karr, "Instabilities of atmospheric laser propagation," Proc. SPIE 1221, 26-57 (1990). https://doi.org/10.1117/12.18327
  20. J. B. Harold, "Simplified predictive methodology for nonlinear repetitive pulse and CW high energy laser propagation," Proc. SPIE 195, 192-202 (1979). https://doi.org/10.1117/12.957946
  21. J. Liu and Y.-S. Ma, "3D level-set topology optimization: A machining feature-based approach," Struct. Multidiscip. Optim. 52, 563-582 (2015). https://doi.org/10.1007/s00158-015-1263-7
  22. J. Zhang, "Development of a parallel geomechanics code based on the message-passing-interface (MPI) approach and iterative coupling with a parallelized flow and thermal simulator for the analysis of system behavior in hydrate-bearing geologic media," Ph. D. Thesis, Texas A&M University, TX, Usa (2021).
  23. M. L. Gross, K. V. Meredith, and M. W. Beckstead, "Fast cook-off modeling of HMX," Combust. Flame 162, 3307-3315 (2015). https://doi.org/10.1016/j.combustflame.2015.05.020
  24. K. Ahn, S. Lee, and I. Park, and H. Yang, "Numerical simulation of high energy laser propagation through the atmosphere and phase correction based on adaptive optics," J. Korean Phys. Soc. 79, 918-929 (2021).
  25. E. L. Lee, H. C. Hornig, and J. W. Kury, "Adiabatic expansion of high explosive detonation products," Lawrence Livermore National Laboratory, Livermore, CA, USA, Technical report UCRL-50422 (1968).
  26. D. J. Steinberg, "Equation of state and strength properties of selected materials," Lawrence Livermore National Laboratory, Livermore, CA, USA, Technical Report UCRL-MA-106439 (1996).
  27. R. Burkard, "Sound pressure level measurement and spectral analysis of brief acoustic transients," Electroencephalogr. Clin. Neurophysiol. 57, 83-91 (1984). https://doi.org/10.1016/0013-4694(84)90010-5
  28. B. Kim, S. Choi, and J. J. Yoh, "Modeling the shock-induced multiple reactions in a random bed of metallic granules in an energetic material," Combust. Flame 210, 54-70 (2019). https://doi.org/10.1016/j.combustflame.2019.08.017
  29. S.-Y. Cho, H.-J. Kim, and J. J. Yoh, "Addressing the complex geometric effects on the three-dimensional transition to detonation in hydrocarbon-air mixtures using a parametrized level-set algorithm," Inter. J. Hydrog. Energy 46, 27827-27840 (2021). https://doi.org/10.1016/j.ijhydene.2021.06.025
  30. W. E. Deal, "Measurement of Chapman-Jouguet pressure for explosives," J. Chem. Phys. 27, 796-800 (1957). https://doi.org/10.1063/1.1743831