38

JOURNAL OF COMMUNICATIONS AND NETWORKS. VOL. 6, NO. 1, MARCH 2004

A Simple Timeout Algorithm for Point-to-Multipoint ABR
Service

Wei Kuang Lai, Chien Ting Chen, and Chilin Li

Abstract: The ABR point-to-multipoint connection is now play-
ing a more important role than before. Many consolidation algo-
rithms have been proposed to solve the consolidation noise problem
and the slow transient response problem. But few timeout algo-
rithms are proposed to handle the non-responsive branches for the
multicast connections. Chen’s algorithm needs exchanging control
messages between switches [9]. Besides, it may mistake a respon-
sive branch as a non-responsive branch because of fast changes in
source rates, which causes wrong information in BRM cells and
may lead to network congestion and data losses in the responsive
branch. We propose a simple timeout algorithm which can handle
the non-responsive branches without exchanging message between
switches. The timeout value for each switch is computed locally.
Simulation results show that the proposed timeout algorithm can
efficiently handle the non-responsive branches and utilize the avail-
able bandwidth within a small period of time. In addition, our al-
gorithm could handle the situation when the source rates change
quickly.

Index Terms: Multicast, ATM, branch.

I. INTRODUCTION

The point-to-multipoint, or multicast, ABR service is impor-
tant for many emerging data applications. These applications
include audio and video conferences, video on demand, distance
learning, tele-metering, distributed games, server and replicated
database synchronization, advertising, searching, and data dis-
tributions.

In ABR point-to-point connections, the source sends cells at
the minimum speed that can be supported by all the switches
on the path from the source to the destinations. It uses a close-
loop flow control to adjust the source sending rate according to
network conditions.

In ABR point-to-multipoint flow control, we assume that a
multicast tree has been created from the source to destinations
in this paper. For better understanding and reference, we list re-
lated terms of this paper and their meanings in Table 1. Since
the destinations send BRM (Backward Resource Management)
cells back to the source, the branch points have to consolidate
the information such as ER (Explicit Rate), CI (Congestion In-
dication), and NI (No Increase) from the downstream nodes.
There are several problems. First, there may have been more
than one feedback. Among them, we have to decide which one
is up-to-date or important, the consolidation noise problem. We
also have to avoid slow response because of many branches or
long delays from some branches, the slow transient response

Manuscript received October 3, 2001; approved for publication by Tony Lee,
Division 11l Editor, November 9, 2002.

The authors are all with department of computer science and engineering, Na-
tional Sun Yat-Sen Universality, Taiwan 804, email: wkiai@cse.nsysu.edu.tw.

problem. In addition, there may have some non-responsive
branches which increase the response time and form an interest-
ing problem. This kind of problem is named the non-responsive
branch problem in this paper. Many consolidation algorithms
(branch algorithms) have been proposed to solve the consoli-
dation noise problem and the slow response transient problem

[31-(8].

Roberts [3] proposed that a branch point, usually a switch,
should return a BRM cell to its upstream node whenever it re-
ceives an FRM (Forward Resource Management) cell. The ER
in the BRM cell is the minimum of the ER in the last FRM
cell and all ERs reported by downstream branches since the
last BRM cell was generated. Tzeng and Siu [4] proposed a
slightly more conservative algorithm than Roberts’ algorithm.
The branch point can only send a BRM cell to its upstream
node when it receives a FRM cell and it has received at least
one BRM cell since the last BRM cell is sent to its upstream
node. Ren, Siu, and Suzuki [5] argued that the branch point
should avoid the heavy processing overheads of RM cells. They
proposed that the branch point does not need to initiate the gen-
eration of BRM cells, but simply forwards selected BRM cells
received from downstream nodes, after modifying the contents.
The “wait-for-all” algorithm is the one that can totally reduce
the consolidation noise [5]. It allows the branch point to send
a BRM cell to its upstream node only when it received all the
feedback from downstream branches. The “wait-for-all” algo-
rithm has a possible problem. If there is no timeout mechanism
for each branch, the “wait-for-all” algorithm will not be able to
respond to the changes of the network conditions whenever any
branch becomes non-responsive.

However, few algorithms are proposed to solve the non-
responsive branch problem. Chen [9] proposed a dynamic time-
out algorithm to handle non-responsive branches for above al-
gorithms such as the “wait-for-all” algorithm. But the complex-
ity of implementation is too high. Besides, the algorithm will
mistake a responsive branch as a non-responsive branch when
the source rates change quickly. When a branch is responsive
but the algorithm mistakes it as non-responsive, the information
carried in the BRM cell may be incorrect. Moreover, the source
may then send data at a rate which exceeds the transmission
rate of the slow branch. It can lead to network congestion in the
branch and data transmission losses for upper layer applications.
When a branch is non-responsive but the algorithm mistakes it
as responsive, the responsive time will be prolonged. Since the
former mistake is less desirable than the later, we should try to
avoid the former kind of mistake. We propose a new timeout al-
gorithm for the ABR multicast connection with lower cost of im-
plementation. The new timeout algorithm would not mistake a
responsive branch as a non-responsive branch when source rates

1229-2370/04/$10.00 © 2004 KICS

LAI et al.: A SIMPLE TIMEOUT ALGORITHM FOR POINT-TO-MULTIPOINT ABR SERVICE

Table 1. The terms used in this paper and their meanings.

39

BRM (Backward Resource | A resource management cell sent from the switch or destination to the source.

Management) cell

FRM (Forward Resource | A resource management cell sent from the source to the destination.

Management) cell

STV (Switch Time Out | Each switch maintains a STV which is the largest timeout among the timeouts of

Value) branches. The STV is used to update the timeout value of the switch’s upstream
switches.

FRTT (Fixed Round Trip | The sum of the fixed and propagation delays from the switch to the leaf and back, by

Time) using the ABR signaling messages.

Trm The default value of Trm is 100 milliseconds and it provides an upper bound between
two FRM cells for an active source.

Nrm The default value is 32 cells which is the maximum number of cells a source may send
for each forward RM cell.

NFRM A counter maintained by a switch to store the number of FRM cells received between
two unmarked BRM cells.

ICR (Initial Cell Rate) The rate at which a source should send initially and after idle period.

MCR (Minimum Cell Rate) | The rate at which the source is always allowed to send.

PCR (Peak Cell Rate) The rate at which the source may never exceed.

CCR (Current Cell Rate) The rate at which the source sends currently.

ER (Explicit Rate) The rate which the source is allowed to send in the network.

CI (Congestion Indication) Used to notice the source that there is congestion in the network.

NI (No Increase) Used to notice the source not to increase its rate.

change often. The rest of the paper is organized as follows. Sec-
tion Il is an introduction of Chen’s algorithm. We then propose a
simple timeout algorithm for solving the non-responsive branch
problem in Section ITI. We also list the differences between our
algorithm and Chen’s algorithm in Section III. Simulation re-
sults and comparison of our algorithm and Chen’s algorithm for
different background CBR traffic are shown in Section IV. Con-
clusions are in Section V.

II. CHEN’S ALGORITHM

In Chen’s algorithm, each switch will maintain a timeout
value of each branch. A timeout value of a branch is the longest
waiting time for all its leaves to return a BRM cell. Each switch
will also maintain a Switch Timeout Value (STV) which is the
largest timeout among the timeouts of branches. A leaf is called
an rm-inactive leaf if the leaf has not received an FRM cell. An
rm-inactive branch is a branch with one or more inactive leafs
and an rm-active branch is a branch without any inactive leafs.

A. Addition and Deletion of a Node

When a leaf node wants to join a multicast connection, the
nearest switch will get a FRTT (Fixed Round-Trip Time) value,
which is the sum of the fixed and propagation delays from the
switch to the leaf and back, by using ABR signaling messages.
The ABR signaling message contains two parameters, Trm and
Nrm. The default value of Trm is 100 ms and the default value of
Nrm is 32 cells. The source will generate an FRM cell if either
the time has exceeded Trm or Nrm~1 cells have been sent since
last time the source forwarded an FRM cell. This algorithm
will use four parameters, FRTT, Trm, Nrm, and ICR (Initial Cell
Rate) to calculate the timeout value for the switch with the addi-

tion of the leaf node. The units of the FRTT, Trm, and ICR pa-
rameters are microseconds, milliseconds, and cells/second, re-
spectively. The timeout value from the switch along the down-
stream to the leaf is calculated as follows.

FRTT
1000

>< b
min(Trm, J52 x 1000)] b

Timeouty =

where (3 is a scaling factor and is set to 2 in [9].

All branches along the path from the new leaf to the root be-
come the rm-inactive branches. It means the timeout values of
these branches have to be updated by a layered scheme. The
timeout update algorithm is needed whenever the timeout value
of a branch is updated and is described as follows. First, the
algorithm compares the calculated timeout value with the STV
and updates the STV if the timeout is greater than the STV. The
timeout update algorithm stops if the timeout is not greater than
the STV.

If the timeout is greater than STV, the switch measures the
round trip time (RTT) between itself and the upstream switch.
The algorithm uses a control message, RTT MEASUREMENT,
to get the RTT value from the switch to its upstream switch and
back. Assuming that the unit of the RTT parameter is microsec-
onds, the switch then calculates a timeout value for its upstream
branch as follows:

RTT
1000

Nrm
, N 1000)1

x 3.

Timeout, = Timeouty +

min(Trm

Finally, the switch sends a control message, UPDATE, which
includes the new timeout value, Timeout,, to its upstream

40

=

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6, NO. I, MARCH 2004

B,
50km
[]] SOkm _ 100km
gﬁ* I T e B
A, SW,
50km
]
Al

Fig. 1. A parking lot configuration.

switch. The upstream switch gets the updated timeout value of
the branch and repeats the timeout update algorithm until either
(1) the timeout value is less than the STV value of the switch or
(2) there is no upstream node for the switch.

For example, in Fig. 1 we assume Aj is a new node added to
SWy. Then switch SWy first gets the FRTT from SW, to As
and back, and uses the FRTT, Trm, Nrm, and ICR to compute
a timeout value, Timeout,;. Then the computed timeout value,
Timeouty, is compared with STV. If the computed timeout value
is greater than STV, the STV value of SW5 is set to the com-
puted timeout. Then switch SW5 sends a control message, RTT
MEASUREMENT, to upstream switch SWy, to get RTT be-
tween switch SW3 and switch SW;. The RTT, Timeouty, Trm,
Nrm, and ICR are used to compute a timeout value, Timeout,,,
which is included in a control message, UPDATE, and sent to
switch SW;. When switch SW; receives the UPDATE mes-
sage, it compares the received Timeout, with its STV. If the
received timeout value, Timeout,, is greater than its STV, the
STV value of SW is set to Timeout,,. The following operations
in switch SW; are similar to switch SW; because it has an up-
stream switch, SWy. On the other hand, if switch SW, receives
an update message from switch SWy, switch SWq only com-
pares its STV with the received Timeout,, and changes its STV
if the STV is smaller than Timeout,, since there is no upstream
switch. The flowchart in Fig. 2 shows the operations of Chen’s
algorithm for the nearest switch and upstream switches in detail
when a new node is added to a switch. It also shows that Chen’s
algorithm needs control messages and ABR signals to update
timeout values for switches. It is complex compared to our al-
gorithm. We will show in next section that our algorithm does
not have to exchange messages between switches for computing
timeout values.

Similarly, when a leaf node wants to leave a multicast connec-
tion, the leaving of the leaf node is handled recursively. When a
leaf leaves a multicast tree and the nearest switch to the leaf is
still in the multicast tree, the switch checks if the timeout value
of the branch to the leaf is equal to the STV value. If the two val-
ues are not the same, the STV value stays unchanged. If the two
values are equal, the STV should be updated as follows. When
the participating branch that has the maximum timeout value is
an rm-inactive branch, the algorithm first resets the STV to be
zero and sets Timeouty to be the timeout value of this branch.
The timeout update algorithm is then called to update the time-
out value. When the participating branch that has the maximum

timeout value is an rm-active branch, the algorithm ends.

B. Adjustment of Timeout Value based on Measurements

For the rm-active branch, each switch maintains a counter,
NFRM, to store the number of FRM cells received between two
unmarked BRM cells. It then updates the timeout value accord-
ing to the formula:

Timeout, = aTimeout + (1 — a)(NFRM x f3),

where o (0 < o < 1) is a smoothing factor that determines
the relative weight given to the old value and 3 (8 > 1)is a
scaling factor. The value of NFRM is decreased if the number
of FRM cells received between two BRM cells is reduced. From
the above equation, we can see the timeout is also decreased.
However, the value of NFRM may become smaller due to the
decrease of bandwidth in the forward direction. The decrease
of timeout value may lead to mistaking a responsive switch as a
non-responsive branch. Although this can be avoided by having
a larger o value (close to 1), we then have a slower response
time when there is really a non-responsive branch. The effects
of a larger o value are also shown in two simulations in Section
V.

1. TIMEOUT ALGORITHM

We will explain possible problems of Chen’s timeout algo-
rithm first and then we will describe our algorithm.

A. Possible Problems of CHEN’s Timeout Algorithm

As we can observe in Chen’s timeout algorithm, it still has
certain problems such as the complexity of implementation, the
signaling delay time, and the scalability with different network
conditions. The switch has to make a lot of effort to maintain the
timeout value for each branch, monitor the current conditions of
the network, and handle signals between themselves and other
switches. The algorithm also mistakes a responsive branch as
a non-responsive branch when the source rate changes fast as
shown later.

We propose a simplified timeout algorithm which can achieve
approximately the same performance of the Chen’s algorithm
but have much lower complexity. When sources change rates
frequently, our algorithm will avoid making wrong judgments
of the responsive branch as Chen’s algorithm.

LAl et al.: A SIMPLE TIMEOQUT ALGORITHM FOR POINT-TO-MULTIPOINT ABR SERVICE

Addition of a node

|

—

Using ABR Signals
to get FRTT

_ 1

Calculate Timeout,

No
Timeouts> STV?

STV = Timeout,

There is an
upstream switch?

Using a control message,
RTT measurement, to get
RTT between itself and

upstream switch

Calculate Timeout.

Sending a control
message, UPDATE,

with the calculated
Timeout.

(a)

41

Receiving an update
message Timeout «

STV = Timeout.

There is an
upstream switch?

Using a control message,
RTT measurement, to get

‘ RTT between itself and
: upstream switch

Calculate Timeout,

u

Stop

]
Sending a control
message, UPDATE,
with the calculated
Timeout,

.
|

(b)

Fig. 2. The operations of Chen’s algorithm when a new node is added to a switch: (a) the newest switches, (b) upstream switches.

B. Algorithm Design

Our timeout algorithm does not exchange messages among
switches. Hence, it needs only monitor the current network con-
dition for each branch. Instead of monitoring the number of
FRM cells between two BRM cells to determine the timeout

value as in Chen’s algorithm, we use some common ABR pa-
rameters, which include Trm, Nrm, MCR (Minimum Cell Rate),
and CCR (Current Cell Rate), to calculate the timeout value for
each branch. A switch maintains a local timer for each branch
connected to the switch. The switch also measures the time in-
terval between two BRM cells. In our algorithm, we only offer

an upper bound of the timeout value. The reason we use an up-
per bound is because the network situation changes all the time
and our goal is to avoid mistaking a responsive branch as a non-
responsive branch.

When a new leaf is going to join the multicast tree, the nearest
switch will start to monitor the time interval between two BRM
cells in this branch. We use a register, BRM_Interval, to store
the value. The switch uses the following formula to calculate
the timeout value for the branch (Branch_Timeout).

Calculatd_Timeout =
Nrm

maX(S—I/Vm’ BRM_Interval), (1)
Branch_Timeout =
N
min(Trm, Calculated Timeout, MTC—H;). @)

Here SW[CCR] is the current cell rate received from the
source. BRM _Interval is the measured time value between two
BRM cells received from this branch. Nrm/SW[CCR] repre-
sents a reasonable time for two interleaving FRM cell under the
current value of CCR. And Nrm/MCR represents the maximum
time for two interleaving FRM cells if the multicast connection
has made an MCR contract during the connection setup. Note
that all parameters are defined in Traffic Management 4.1. We
first obtain Calculated_Timeout by choosing the maximum of
Nrm/SW[CCR] and BRM _Interval. Nrm/SW[CCR] is increased
when SW[CCR], the source transmission rate in forward di-
rection, is decreased and BRM Interval is increased when the
transmission rate in backward direction is decreased. Hence,
our algorithm considers transmission rates in both forward and
backward directions. Then we pick the minimum of Trm, Calcu-
lated_Timeout, and Nrm/MCR as the timeout for current branch
(Branch_Timeout). Trm is adopted here because Trm is the up-
per bound between two RM cells for an active source. In our
algorithm, each branch has its own timeout value.

We apply our timeout algorithm to the “wait-for-all” algo-
rithm. When there is no timeout, the algorithm is just the same
as the “wait-for-all” algorithm. When there is timeout for a
branch, the switch will ignore the feedback of the branch and
send BRM cells to upstream nodes when the switch has col-
lected all feedback from other branches. The Branch_Timeout
is multiplied by the parameter 3 and the obtained value is used
to decide whether the branch is marked as a non-responsive
branch. If a branch is marked as a non-responsive branch, the
switch will ignore the feedback of the non-responsive branch
unless it becomes responsive again later. If it is not marked as a
non-responsive branch, the Branch_Timeout value is updated by
(1) and (2). In the following, CI is used to represent that there
is congestion in the network, NI is used to notice the source not
to increase its rate, and PCR (Peak Cell Rate) is used to regulate
the maximum transmission rate of sources. Our algorithm only
offers an upper bound for the timeout. The pseudo-code of our
algorithm is as follows:

When receiving an FRM cell:

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6, NO. 1. MARCH 2004

o Multicast this FRM cell to all branches

When receiving a BRM cell: /* No timeout
If NOT BRMReceived; Then
¢ Let BRMReceived; =1
o Let NumberOfBRMReceived = NumberOfBRMRe-
ceived + 1
+ MER = min(MER, ER from BRM cell), MCI = MCI
OR CI from BRM cell, and MNI = MNI OR NI from
BRM cell
« Store the time interval between two BRM cells for
branch;
If NumberOfBRMReceived equals to NumberOfBranches,
Then
o Pass the BRM cell with ER = MER, CI = MCI, and N1
= MNI to the source
¢ MER =PCR, MCI =0, and MNI =0
o Let NumberOfBRMReceived = 0
« Let BRMReceived = 0 for all branches
Else Discard the BRM cell

When a branch has exceeded its timeout value: /* Time-
out
1. The switch will ignore the branch’s feedback and send
BRM cells to upstream nodes when the switch has col-
lected all feedback from other branches
2. If the branch has not received a BRM cell in
(Branch_Timeout * 3) seconds
« Mark this branch as a non-responsive branch /*
branch dead
Else If the branch has received a BRM cell in
(Branch_Timeout * 3) seconds
o Update the Branch_Timeout value according to
(1) and (2)

When a BRM is to be scheduled:
ER = min(ER, ER calculated by rate allocation algo-
rithm for all branches)

When the available ABR capacity is stable, Chen’s timeout
algorithm can adjust the timeout value of each branch and thus
reduce the time needed to handle the non-responsive branches.
But when the network situation is changed fast, it has limited
abilities to adjust the timeout to current network situation. We
summarize the comparison of Chen’s algorithm and our algo-
rithm in Table 2.

1V. SIMULATION RESULTS

In our first simulations, we show that Chen’s timeout algo-
rithm and our timeout algorithm will both be able to detect the
non-responsive branch and raise the source rate. In our second
simulation, we show that Chen’s algorithm will identify a re-
sponsive branch as a non-responsive branch and generate many
unnecessary timeouts or have a slow response time while our al-
gorithm will not. For both simulations, the following parameters
are used:

« All links have the bandwidth of 155 Mbps.

LAl et al.: A SIMPLE TIMEOUT ALGORITHM FOR POINT-TO-MULTIPOINT ABR SERVICE

Table 2. A comparison of two algorithms.

Chen’s algorithm

Our algorithm

non-responsive branch and generate wrong
timeout events.

Implementation Difficult to implement. Switches have to | Easy to implement. Timeout value is de-
complexity be able to communicate with each other | cided locally.

and dynamically adjust the timeout value

for each branch.
Disadvantage May mistake a responsive branch as a | The response time is a little longer than the

response time of Chen’s algorithm under
few situations.

Table 3. A comparison of the starting time in handling non-responsive branch in our algorithm and Chen’s algorithm.

43

a=01| a=03 | a=05 | a=07 | =09

Chen’s algorithm | 8 =1.3 | 32.04 ms | 32.04 ms | 32.04 ms | 32.32 ms | 34.55 ms

Chen’s algorithm | 8 =2 | 32.04ms | 32.04 ms | 32.04 ms | 32.32 ms | 34.83 ms

Chen’s algorithm | =3 | 32.32ms | 32.32ms | 32.32ms | 32.32ms | 34.83 ms

Chen’s algorithm | =4 326ms | 32.6ms | 32.6ms | 32.6ms | 35.11 ms
Our algorithm | =13 31.47 ms
Our algorithm 8=2 31.48 ms
Our algorithm B8=3 31.76 ms
Our algorithm B=4 32.04 ms

» All point-to-multipoint traffic flows from the root to the
leaves of the tree. No traffic flows from the leaves to the
root, except for RM cells.

o The sources are persistent, i.e., there is always data to
send.

o The values for ICR, MCR, and PCR of the ABR connec-
tions are set to 100 Mbps, 0 Mbps, and 155 Mbps, respec-
tively.

o The source rate increase factor (RIF) is set to one, to al-
low the immediate use of the explicit rates indicated in the
returning RM cells at the source.

o The parameters for Chen’s algorithm are set as follows: «
=0.1,0.3,0.5,0.7, and 0.9, respectively and 3 = 1.3, 2, 3,
and 4, respectively.

« The parameter in our algorithm are set a follows: 5=1.3,
2, and 3, respectively.

A. Two Constant CBR Connections as Background Traffic

The parking lot configuration for the simulation is shown in
Fig. 1. SWq, SWy, SWy, SW3, SWy, and SWj5 denote six ATM
switches. The configuration has one ABR multicast connection,
with source Ag and seven receivers Ai, Az, Az, Aa, As, Ag,
and A;. The configuration has another two CBR unicast con-
nections, with a transmission rate of 10 Mbps from By to B,
and a transmission rate of 95 Mbps from Cy to C;. The ABR
multicast connection is active from 0 ms to 110 ms and the CBR
unicast connection is active from 0 ms to 110 ms. The link be-
tween SWy and SW; is non-responsive from 30 ms to 80 ms.
There are three phases in this chain configuration: (1) phase 1:
0 ms to 30 ms, (2) phase 2: 30 ms to 80 ms, and (3) phase 3: 80
ms to 110 ms.

At phase 1, the ABR multicast connection shares the link be-
tween SW; and SW, with two CBR unicast connections from
0 ms to 30 ms. Hence, the source rate of the ABR traffic is de-

creased from 100 Mbps to S0 Mbps and maintains that rate until
the network condition is changed at 30 ms.

At phase 2, the branch between SW, and SW; is non-
responsive at 30 ms and active again at 80 ms. Chen’s time-
out algorithm will be able to find out that the branch is non-
responsive and inform the source Ay to raise the sending rate at
the time between 32.04 ms to 35.11 ms, depending on different
setting of parameters « and 3. Our timeout algorithm will be
able to find out that the branch is non-responsive and inform the
source Ay to raise the transmission source at the time between
31.47 ms to 32.04 ms, depending on different values of 3. Note
that our algorithm only depends on a variable 3.

At phase 3, since the branch is active again, our algorithm will
be able to detect that the branch is responsive and hence adjust
the source rate according to the network condition. Our algo-
rithm will decrease the source rate at around 82.27 ms. Chen’s
algorithm is also able to detect this situation and respond at
around 82.23 ms. Note that the time is not related to « and 3,
and is only influenced by the transmission delays from the RM
cells. We summarize the response time of detecting the time-
out events in Table 3. Fig. 3 shows an example of the timeout
value of the branch between SWj and SW; in Chen’s algorithm.
We can find that the timeout value will increase to a large value
and dynamically adjust to a very small value after the branch is
responsive again. The large variations of timeout values could
cause wrong judgments of timeout events which wiil be shown
in the following simulation.

B. An On-Off CBR Background Traffic and a Constant CBR
Background Traffic

The network configuration is the same as the configuration in
Fig. 1. The ABR multicast connection is active from 0 ms to
130 ms. The CBR source By is still a constant CBR traffic with
a transmission rate of 10 Mbps. However, the CBR source Cy

1200
1000
800
600
400
200
0

Timeout value

75 76 77 78 79 80 81 82 83 84 85

millisecond

Fig. 3. Timeout value for the branch between SWy to SW; in Chen’s
Algorithm (¢ =0.1,3=2).

Allowed Cell Rate ___ Allowed Cell Rate

200 g
150

100

Mbps

50

[0}
O 10 20 30 40 50 60 70 80 90 100 110 120 130
millisecond

Fig. 4. Allowed cell rate for ABR source for both algorithms in simulation
2.

Timeout Situation for «=0.1,8=2

Switch 0
Switch 1
Switch 2
Switch 3
Switch 4
Switch 5

Switch
o = N W A O

® X X > B o

0o 50

100
millisecond

150

Fig. 5. Wrong timeout events detected by Chen’s algorithm (o= 0.1, 3
).

is changed to become an on/off source and its transmission rate
is 125 Mbps. The “on” period and “off” period are interleaved
with 30 ms each. In this simulation, the allowed cell rate of the
ABR traffic is limited by the CBR source. When the CBR source
is on, the ABR source rate is limited to 20 Mbps. When the CBR
source is off, the ABR source sending rate can be increased to
145 Mbps.

The simulation results are shown from Fig. 4 to Fig. 7. Fig. 4
shows the allowed cell rate of ABR source for both algorithms.
Because the allowed cell rate is increased from 20 Mbps to 155
Mbps at around 30 ms and 90 ms, there are timeouts in Chen’s
algorithm as shown in the following figures. Fig. 5 shows the
wrong timeout events detected by Chen’s algorithm in switch 0,
1, 2, 3, 4, and 5 with a=0.1 and 3=2. Because we see there are
many timeouts at around 33 ms to 37 ms, and around 93 ms to
97 ms, we draw these periods in detail. Fig. 6 shows the time-
out events have “propagation effects” from switch 0 to switch
5. Fig. 7 also shows the “propagation effects”. As we can see in
the simulation results, Chen’s timeout algorithm will misjudge a

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6, NO. I, MARCH 2004

Timeout Situation for «=0.1,3=2

& Switch 0
| Switch 1
A Switch 2
X Switch 3
X Switch 4
® Switch 5

Switch

33 335 34 345 35 355 36 365 37

millisecond

Fig. 6. Wrong timeout events between 33 ms and 37 ms detected by
Chen'’s algorithm (o« = 0.1, 5= 2).

Timeout Situation for «=0.1,p=2

& Switch 0
| Switch 1
A Switch 2
x Switch 3
X Switch 4
® Switch 5

LAV 7L I]

Switch

e

93 935 94 945 95 955 96 965 97

millisecond

Fig. 7. . Wrong timeout events between 93 ms and 97 ms detected by
Chen’s algorithm («=0.1, 3=2).

responsive branch and generate many timeouts when the source
rate exhibits oscillations. Our timeout algorithm will not suf-
fer this problem. The number of mistaken timeouts is shown
in Table 4. The reason is that because the source is changed
rapidly, it is very hard to use the FRM cells as a basis to decide
whether the branch is non-responsive. It happens very often that
many FRM cells have passed the switch while receiving very
few BRM cells. Under that condition, there will be timeouts
detected in Chen’s algorithm when « is not large. However, in
fact there is no non-responsive branch and the detection of time-
out events is wrong, which will result in incorrect calculation of
available bandwidth and may lead to congestion. When « is as
large as 0.9, although there are no timeouts detected in simula-
tion 2, we can find that the response time is much slower when
there is really a non-responsive branch as shown in Simulation
1. In our algorithm, we consider both the arrival rates of FRM
cells and BRM cells. Hence, the wrong detection of timeouts is
properly avoided in the simulation.

V. CONCLUSION

Chen proposed a timeout algorithm to handle the “non-
responsive” branches. The main problem of Chen’s algorithm is
its over complexity. It requires the switches to update the time-
out values recursively and demands switches and the leaf nodes
to exchange signals. We proposed a simple timeout algorithm
which can handle the non-responsive branches and is suitable
for the situation when the network condition changes dynami-
cally. Our algorithm will not require signals between switches
and between leaf nodes and switches. Hence, the complexity of

LAl et al.: A SIMPLE TIMEOUT ALGORITHM FOR POINT-TO-MULTIPOINT ABR SERVICE 45

Table 4. A comparison of the number of timeouts detected for the two algorithms.

a=0.1 =03 |a=05|a=07|a=09

Chen’s algorithm | 8= 1.3 171 170 136 106 0
Chen’s algorithm | 5 =2 158 147 132 92 0
Chen’s algorithm | =3 130 102 94 72 0
Chen’s algorithm | =4 97 68 56 48 0

Our algorithm =13 0

Our algorithm 5=2 0

Our algorithm g=3 0

Our algorithm =4 0

our algorithm is much lower. Simulation results showed that our
timeout algorithm can handle the non-responsive branches and
utilize the available bandwidth within a small period of time. Es-
pecially, when the network conditions are changed fast, Chen’s
algorithm may not be able to respond to them correctly and mis-
take a responsive branch as a non-responsive branch while our
algorithm could avoid making mistaken assessments of timeout
events.

ACKNOWLEDGEMENT

This research was supported in part by NSC of Taiwan under
contract 88-2213-E-110-021.

REFERENCES

{11 Y.-Z. Cho and M.-Y. Lee, “An efficient rate-based algorithm for point-to-
multipoint ABR service,” in Proc. IEEE GLOBECOM’97, Nov. 1997.

{21 Traffic Management Specification 4.0, The ATM Forum Technique Com-
mittee, Apr. 1996.

{31 L. Roberts, “Rate based algorithm for point-to-multipoint ABR service,”
in ATM Forum Contribution 940772, 1994,

{41 H.Y. Tzeng and K. Y. Siu, “On max-min fair congestion control for multi-
cast ABR service in ATM,” IEEE J. Select. Areas Commun., vol. 15, no. 3,
Apr. 1997.

[5] W.Ren, K. Siu, and H. Suzuki, “On the performance of congestion control
algorithm for multicast ABR service in ATM,” in Proc. IEEE ATM’96,
Aug. 1996.

[6] S. Fahmy et al., “Feedback consolidation algorithms for ABR point-to-
multipoint connections in ATM networks,” in Proc. IEEE INFOCOM’98,
17th Annual Joint Conference of the IEEE Computer and Communications
Societies, Proceedings, IEEE, vol. 3, 1998, pp. 1004-1013.

[71 T. Jiang, E. W. Zegura, and M. Ammar, “Improved consolidation algo-
rithms for point-to-multipoint ABR service,” in Proc. IEEE ATM Work-
shop’98, 1998, pp. 195-201.

[8] D.-H. Kim et al., “A scalable consolidation algorithm for point-to-
multipoint ABR flow control in ATM networks,” in Proc. IEEE ICC’99,
vol. 1, 1999, pp. 118-123.

[9] H.-S. A. Chen and K. Nahrstedt, “Feedback consolidation and timeout
algorithms for point-to-multipoint ABR service,” in Proc. IEEE ICC’99,
vol. 1, 1999, pp. 135-139.

Wei Kuang Lai received the BS degree in Electri-
cal Engineering from National Taiwan University in
1984 and the Ph.D. degree in Electrical Engineering
from Purdue University in 1992. He joined the faculty
of Department of Computer Science and Engineering,
National Sun Yat-Sen University in August 1992 and
is now an associate professor. His research interests
are in high-speed networks and wireless networks.

Chien Ting Chen received the M. S. degree in De-
partment of Computer Science and Engineering, Na-
tional Sun Yat-Sen University, Kaohsiung, Taiwan, in
2000. His main interest is in IP flow controls over
ATM networks.

Chilin Li received the M. S. degree in Department
of Computer Science and Engineering, National Sun
Yat-Sen University, Kaohsiung, Taiwan, in 2003. His
main interest is in network protocols and mobile ad
hoc networks.

