DOI QR코드

DOI QR Code

Fault Detection of Small Turbojet Engine for UAV Using Unscented Kalman Filter and Sequential Probability Ratio Test

무향칼만필터와 연속확률비 평가를 이용한 무인기용 소형제트엔진의 결함탐지

  • Han, Dong Ju (Dept. of Aircraft Maintenance Engineering, Kukdong University)
  • 한동주 (극동대학교 항공정비학과)
  • Received : 2017.07.24
  • Accepted : 2017.08.28
  • Published : 2017.08.31

Abstract

A study is performed for the effective detection method of a fault which is occurred during operation in a small turbojet engine with non-linear characteristics used by unmanned air vehicle. For this study the non-linear dynamic model of the engine is derived from transient thermodynamic cycle analysis. Also for inducing real operation conditions the controller is developed associated with unscented Kalman filter to estimate noises. Sequential probability ratio test is introduced as a real time method to detect a fault which is manipulated for simulation as a malfunction of rotational speed sensor contaminated by large amount of noise. The method applied to the fault detection during operation verifies its effectiveness and high feasibility by showing good and definite decision performances of the fault.

비선형특성을 갖고 있는 실제 무인기용 소형터보제트엔진의 운전 중 발생하는 결함을 효과적으로 탐지하기 위한 방안에 대해 연구하였다. 이를 위해서 동적 열역학 사이클해석을 통한 비선형 동특성 모델을 도출하였다. 실제적인 운전상황의 연출을 위해 잡음특성의 평가에 부합하는 무향칼만필터를 적용하였고 필터성능이 가미된 제어기를 설계하였다. 엔진회전수 센서의 결함을 통한 엔진 결함발생을 모사하였고, 발생된 결함의 실시간적인 탐지 방안으로 연속확률비 평가기법을 도입하였다. 이를 운전 중 엔진결함탐지에 적용한 결과 분명한 결정양상을 보임으로써 매우 효과적이고 유용함을 확인하였다.

Keywords

References

  1. D. J. Han, "Non-linear Control of Turbojet Engine for High Maneuverability UAV," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 5, pp. 431-438, May 2012. https://doi.org/10.5139/JKSAS.2012.40.5.431
  2. D. J. Han and C. D. Kong, "Design of Sliding Mode Controller for Jet Engine," Journal of Aerospace System Engineering, Vol. 7, No. 4, pp. 18-26 Dec. 2013.
  3. S. Borguet and O. Leonard, "A Generalized Likelihood Ratio Test for Adaptive Gas Turbine Performance Monitoring," J. of Engineering for Gas Turbine and Power, Vol. 131, pp. 1-8, Jan. 2009.
  4. W. Xue and Y. Guo, "Application of Kalman Filters for the Fault Diagnoses of Aircraft Engine," INTECH, Croatia, pp. 349-362, May 2010.
  5. R. Isermann, Fault-Diagnosis Applications, Springer Heidelberg Dordrecht London New York, 2011.
  6. R. M. Guerra and J. L. Machuca, Fault Detection and Diagnosis in Nonlinear Systems, Springer Cham Heidelberg New York Dordrecht London, 2014.
  7. S. J. Julier and J. K. Uhlmann, "Unscented Filtering and Nonlinear Estimation," Proceedings of the IEEE, Vol. 92, No. 3, pp. 401-422, March 2004. https://doi.org/10.1109/JPROC.2003.823141
  8. M. E. Rhudy and Y. Gu, "Understanding Nonlinear Kalman Filters, Part II: An Implementation Guide," Interactive Robotics Letters, Tutorial, 2013.
  9. N. Tudoroiu, E. S. Tehrani, K. Khorasani and R. E. Tudoroiu, "Real Time Embeded Kalman Filter Estimators for Fault Detection in a Satellite's Dynamics," Int. J. of Computer Science and Applications, Vol. 8, No. 1, pp. 83-109, 2011.
  10. F. Kiasi, J. Prakash, S. L. Shah and J. M. Lee, "Fault Detection and Isolation of a Benchmark Wind Turbine using the Likelihood Ratio Test," Preprints of the 18th IFAC World Congress, pp. 7079-7085, Aug. 28 - Sept. 2 2011.
  11. A. Jazwinski, Stochastic Process and Filtering Theory, Academic Press, New York, 2007.
  12. H. Torabi and S. M. Mirhosseini, "Sequential Probability Ratio Tests for Fuzzy Hypothesis Testing," Applied Mathematical Sciences, Vol. 3, No. 33, pp. 1609-1618, 2009.
  13. MICROTURBO SA, TRI 60-3 PROPULSION SYSTEMS, Manual, 1986.
  14. J. F. Sellers and C. J. Daniele, "DYGEN A Program for Calculating Steady-State and Transient Performance of Turbojet and Turbofan Engines," NASA TN D-7901, April 1975.