• Title/Summary/Keyword: Transient flow analysis

Search Result 534, Processing Time 0.026 seconds

Combustion Characteristics of Coal Particle Array (미분탄 입자들의 배열에 따른 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 3 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increases due to flow acceleration. When the vertical particle spacing is smaller than $6R_{o}$, volatile release and carbon conversion ratio of the second particle decrease greatly due to reduction of flame penetration depth.

  • PDF

Combustion Characteristics of Spherical Droplet in Turbulent Flow Field (난류 유동장 내 구형 액적의 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH (비정렬격자 2-유체 3-상 유동 해석 기법)

  • Kim, J.;Park, I.K.;Cho, H.K.;Yoon, H.Y.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

Analysis of Density Distribution for Butane Using Three-dimentional and Real-time Digital Speckle Tomography (3차원 실시간 디지털 스페클 토모그래피를 이용한 부탄 밀도 분포 분석)

  • Go, Han-Seo;Park, Gwang-Hui;Kim, Yong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1789-1794
    • /
    • 2003
  • Transient and asymmetric density distributions have been investigated by digital speckle tomography. Multiple CCD images captured movements of speckles in three angles of view simultaneously because the flows were asymmetric and transient. The speckle movements between no flow and downward butane flow from a circular half opening have been calculated by a cross-correlation tracking method so that those distances can be tranferred to deflection angles of laser rays for density gradients. The three-dimensional density fields have been reconstructed from the fringe shift by a real-time multiplicative algebraic reconstruction technique (MART).

  • PDF

The Development of Graphics Package for Power System Analysis using Object-Oriented Programming (객체지향기법을 이용한 전력계통 해석을 위한 그래픽 소프트웨어 개발)

  • Gim, Jae-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.10
    • /
    • pp.418-425
    • /
    • 2006
  • This paper describes a simulation package for a power system using objected-oriented programming. The package includes four parts which are a power flow, a short circuit calculation, a transient simulation program, and an economic dispatch. The graphical user interface(GUI) is designed as a common platform which allows the user to create one-line diagrams of systems, specify components of power systems as well as simulation parameters, and view the output produced by the chosen application. The paper presents the data structure of the functional modules such as the draw module, power system data module, the power system simulation module, and the utility module using the object oriented programming. This package may be useful for educational and research purposes.

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

A Numerical Analysis on Transient Fuel Temperatures in a Military Aircraft with Additional Fuel Supplies and Return (추가연료 공급,회송량에 따른 항공기내 연료온도 변화에 대한 수치해석적 연구)

  • Kim,Yeong-Jun;Kim,Chang-Nyeong;Kim,Cheol-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.73-84
    • /
    • 2003
  • A transient analysis on fuel temperatures in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method of modified Dufort-Frankel scheme. Among various missions, close air support mission was considered with 20% hot day ambient condition in subsonic region. The aircraft was assumed to be in turbulent flow. The fuel system model with additional fuel supplies and return concept was considered. As a result of this analysis, the fuel tank temperatures have increased with the increase of the additional fuel supplies. In contrast to tank temperatures, the fuel temperature at the engine inlet has decreased with the increase of additional fuel supplies except in some in-flight phases having high engine fuel flow. From this analysis, the fuel system with the additional fuel supplies and return concept has been shown to be an effective method to decrease the engine inlet fuel temperature. Also, it has been shown that fuel flow rate through fuel/oil heat exchanger is a key factor influencing fuel temperature.

Development and Its Application of a Discrete Fracture Flow Model for the Analysis of Gas-Water Transient Flow in Fractured Rock Masses Around Storage Cavern (지하저장공동 주변 불연속 암반에서의 가스-물 천이유동해석을 위한 개별균열 유동모델의 개발 및 응용)

  • 나승훈;성원모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.705-712
    • /
    • 2000
  • The fluid generally flows through fractures in crystalline rocks where most of underground storage facilities are constructed because of their low hydraulic conductivities. The fractured rock is better to be conceptualized with a discrete fracture concept, rather continuum approach. In the aspect of fluid flow in underground, the simultaneous flow of groundwater and gas should be considered in the cases of generation and leakage of gas in nuclear waste disposal facilities, air sparging process and soil vapor extraction for eliminating contaminants in soil or rock pore, and pneumatic fracturing for the improvement of permeability of rock mass. For the purpose of appropriate analysis of groundwater-gas flow, this study presents an unsteady-state multi-phase FEM fracture network simulator. Numerical simulation has been also conducted to investigate the hydraulic head distribution and air tightness around Ulsan LPG storage cavern. The recorded hydraulic head at the observation well Y was -5 to -10 m. From the results obtained by the developed model, it shows that the discrete fracture model yielded hydraulic head of -10 m, whereas great discrepancy with the field data was observed in the case of equivalent continuum modeling. The air tightness of individual fractures around cavern was examined according to two different operating pressures and as a result, only several numbers of fractures neighboring the cavern did not satisfy the criteria of air tightness at 882 kPa of cavern pressure. In the meantime, when operating pressure is 710.5 kPa, the most areas did not satisfy air tightness criteria. Finally, in the case of gas leaking from cavern to the surrounding rocks, the resulted hydraulic head and flowing pattern was changed and, therefore, gas was leaked out from the cavern ceiling and groundwater was flowed into the cavern through the walls.

  • PDF

Pseudospectral Analysis of Plane Poiseuille, Plane Couette and Blasius Flow (평행 Poiseuille, 평행 Couette, Blasius Flow의 준안정 해석)

  • Choi, Snag-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.319-325
    • /
    • 2003
  • We investigate the spectra and the pseudospectra in plane Poiseuille flow, plane Couette flow and Blasius flow. At subcritical Reynolds number, the spectra are lied strictly inside the stable complex half-plane, but the pseudospectra are lied in the unstable half-plane, reflecting the large linear transient growth that certain perturbations may excite. It means that the smooth flows may become to turbulent even though all the eigenmodes decay monotonically. We found that pseudospectra is one reason that causes subcritical transition in plane Poiseuille flow and plane Couette flow and bypass transition in Blasius flow.

A SPACIAL ANALYSIS OF IN-CYLINDER TURBULENCE FLOW IN SI ENGINE USING CROSS CORRELATION PIV (상호상관 PIV기법을 이용한 엔진 실린더내 난류의 공간적 해석)

  • Chung, Ku-Seob;Chung, Yong-Oug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3038-3043
    • /
    • 2008
  • Tumble or swirl flow is used adequately to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the late time of compression stroke. However, since in-cylinder flow is a kind of transient state with rapid flow variation, that is, non-steady state flow, swirl or tumble flow has not been analyzed sufficiently and not been recognized whether they are available for combustion theoretically yet. In the investigation of intake turbulent characteristics using PIV method, different flow characteristics were showed according to SCV figures. SCV installed engine had higher vorticity, turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation component increased and flow energy was conserved effectively through the experiment.

  • PDF