DOI QR코드

DOI QR Code

Pseudospectral Analysis of Plane Poiseuille, Plane Couette and Blasius Flow

평행 Poiseuille, 평행 Couette, Blasius Flow의 준안정 해석

  • 최상규 (한국과학기술원 기계공학과) ;
  • 정명균 (한국과학기술원 기계공학과)
  • Published : 2003.03.01

Abstract

We investigate the spectra and the pseudospectra in plane Poiseuille flow, plane Couette flow and Blasius flow. At subcritical Reynolds number, the spectra are lied strictly inside the stable complex half-plane, but the pseudospectra are lied in the unstable half-plane, reflecting the large linear transient growth that certain perturbations may excite. It means that the smooth flows may become to turbulent even though all the eigenmodes decay monotonically. We found that pseudospectra is one reason that causes subcritical transition in plane Poiseuille flow and plane Couette flow and bypass transition in Blasius flow.

Keywords

References

  1. White, F. M., 1991, 'Viscous Fluid Flow,' McGraw-Hill, 2nd ed.
  2. Drazin, P. G. and Reid, W. H., 1981, Hydrodynamic Stability,' Cambridge university press
  3. Schubauer, G. B. and Skramstad, H. K., 1948, 'Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate,' NACA Rep.
  4. Jordinson, R., 1970, 'The Flat Plate Boundary Layer. Part 1. Numerical Integration of the Orr-Sommerfeld Equation,' J. Fluid Mech., Vol. 43, part. 4, pp. 801-811 https://doi.org/10.1017/S0022112070002756
  5. Orszag, S. A., 1971, 'Accurate Solution of the Orr-Sommerfeld Stability Equation,' J. Fluid Mech., Vol. 50, part 4, pp. 689-703 https://doi.org/10.1017/S0022112071002842
  6. Ellingsen, T., and Palm, E., 1975, 'Stability of Linear Flow,' The Physics of Fluids, Vol. 18, No. 4, 487-488 https://doi.org/10.1063/1.861156
  7. Landahl, M. T., 1980, ' A Note on an Algebraic Instability of Inviscid Parallel Shear Flow,' J. Fluid Mech., Vol. 98, part 2, pp. 243-251 https://doi.org/10.1017/S0022112080000122
  8. Hultgren, L. S., and Gustavsson, L. H., 1981, 'Algebraic Growth of Disturbances in a Laminar Boundary Layer,' Phys. Fluids, 24(6), 1000-1004 https://doi.org/10.1063/1.863490
  9. Carlson, D., Widnall, S. E., and Peeters, M. F., 1982, 'A Flow-Visualization Study of Transition in Plane Poiseuille Flow,' J. Fluid Mech., Vol. 121, 487-505 https://doi.org/10.1017/S0022112082002006
  10. Trefethen, M. F., Trefethen, A. E., Reddy, S. C. and Driscoll, T. A., 1993, 'Hydrodynamic Stability Without Eigenvalues,' Science, Vol. 261, 578-584 https://doi.org/10.1126/science.261.5121.578
  11. Reddy, S. C., Schmid, P. J., and Henningson, D. S., 1993 'Pseudospectra of the Orr-Sommerfeld Operator,' SIAM J. APPL. MATH., Vol. 53, No. 1, 15-47 https://doi.org/10.1137/0153002
  12. Trefethen, A. E., Trefethen, L. N., and Schmid, P. J., 1999, 'Spectra and Pseudospectra for Pipe Poiseuille Flow,' Comput. Methods Appl. Mech. Engrg., 1926, 413-420 https://doi.org/10.1016/S0045-7825(98)00364-8
  13. Schmid, P. J. and Henningson, D. S., 2001, 'Stability and Transition in Shear Flows,' Springer
  14. Tillmark, N., and Alfredsson, P. H., 1992, 'Experiments on Transition in Plane Couette Flow' J. Fluid Mech., Vol. 235, 89-102 https://doi.org/10.1017/S0022112092001046
  15. Grosch, C. E., and Salwen, H., 1978, 'The Continuous Spectrum of the Orr-Sommerfeld Equation. Part 1. The Spectrum and the Eigenfunctions,' J. Fluid Mech., Vol. 87, part 1, pp. 33-54 https://doi.org/10.1017/S0022112078002918