• Title/Summary/Keyword: Transform formula

Search Result 113, Processing Time 0.023 seconds

TIME-FREQUENCY ANALYSIS ASSOCIATED WITH K-HANKEL-WIGNER TRANSFORMS

  • Boubatra, Mohamed Amine
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.521-535
    • /
    • 2022
  • In this paper, we introduce the k-Hankel-Wigner transform on R in some problems of time-frequency analysis. As a first point, we present some harmonic analysis results such as Plancherel's, Parseval's and an inversion formulas for this transform. Next, we prove a Heisenberg's uncertainty principle and a Calderón's reproducing formula for this transform. We conclude this paper by studying an extremal function for this transform.

EXPONENTIAL FORMULA FOR C REGULARIZED SEMIGROUPS

  • LEE, YOUNG S.
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.401-409
    • /
    • 2004
  • In this paper, we show that C-resolvent of generator can be represented by Laplace transform and establish an exponential formula for C regularized semigroups whose antiderivatives are exponentially bounded.

  • PDF

THE INVERSION FORMULA OF THE STIELTJES TRANSFORM OF SPECTRAL DISTRIBUTION

  • Choi, Sang-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.519-524
    • /
    • 2009
  • In multivariate analysis, the inversion formula of the Stieltjes transform is used to find the density of a spectral distribution of random matrices of sample covariance type. Let $B_{n}\;=\;\frac{1}{n}Y_{m}^{T}T_{m}Y_{m}$ where $Ym\;=\;[Y_{ij}]_{m{\times}n}$ is with independent, identically distributed entries and $T_m$ is an $m{\times}m$ symmetric nonnegative definite random matrix independent of the $Y_{ij}{^{\prime}}s$. In the present paper, using the inversion formula of the Stieltjes transform, we will find the density function of the limiting distribution of $B_n$ away from zero.

  • PDF

A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals on classical Wiener space. Yoo and Skoug extended this result to an abstract Wiener space. In this paper, we investigate a change of scale formula for generalized Wiener integrals of various functions using the generalized Fourier-Feynman transform.

ANALYTIC FOURIER-FEYNMAN TRANSFORM AND FIRST VARIATION ON ABSTRACT WIENER SPACE

  • Chang, Kun-Soo;Song, Teuk-Seob;Yoo, Il
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.485-501
    • /
    • 2001
  • In this paper we express analytic Feynman integral of the first variation of a functional F in terms of analytic Feynman integral of the product F with a linear factor and obtain an integration by parts formula of the analytic Feynman integral of functionals on abstract Wiener space. We find the Fourier-Feynman transform for the product of functionals in the Fresnel class F(B) with n linear factors.

  • PDF

Generalized Fourier-Feynman Transform of Bounded Cylinder Functions on the Function Space Ca,b[0, T]

  • Jae Gil Choi
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.219-233
    • /
    • 2024
  • In this paper, we study the generalized Fourier-Feynman transform (GFFT) for functions on the general Wiener space Ca,b[0, T]. We establish an explicit evaluation formula for the analytic GFFT of bounded cylinder functions on Ca,b[0, T]. We start by examining certain cylinder functions which belong in a Banach algebra of bounded functions on Ca,b[0, T]. We then obtain an explicit formula for the analytic GFFT of the bounded cylinder functions.

A CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONDITIONAL CONVOLUTION PRODUCT WITH CHANGE OF SCALES ON A FUNCTION SPACE I

  • Cho, Dong Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.687-704
    • /
    • 2017
  • Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman transform of the convolution product can be expressed in terms of the product of the conditional FourierFeynman transforms of each function. Finally we establish change of scale formulas for the generalized analytic conditional Fourier-Feynman transform and the conditional convolution product. In this evaluation formulas and change of scale formulas we use multivariate normal distributions so that the orthonormalization process of projection vectors which are essential to establish the conditional expectations, can be removed in the existing conditional Fourier-Feynman transforms, conditional convolution products and change of scale formulas.

CHANGE OF SCALE FORMULAS FOR CONDITIONAL WIENER INTEGRALS AS INTEGRAL TRANSFORMS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.91-109
    • /
    • 2007
  • In this paper, we derive a change of scale formula for conditional Wiener integrals, as integral transforms, of possibly unbounded functions over Wiener paths in abstract Wiener space. In fact, we derive the change of scale formula for the product of the functions in a Banach algebra which is equivalent to both the Fresnel class and the space of measures of bounded variation over a real separable Hilbert space, and the $L_p-type$cylinder functions over Wiener paths in abstract Wiener space. As an application of the result, we obtain a change of scale formula for the conditional analytic Fourier-Feynman transform of the product of the functions.

AN APPROXIMATED EUROPEAN OPTION PRICE UNDER STOCHASTIC ELASTICITY OF VARIANCE USING MELLIN TRANSFORMS

  • Kim, So-Yeun;Yoon, Ji-Hun
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.239-248
    • /
    • 2018
  • In this paper, we derive a closed-form formula of a second-order approximation for a European corrected option price under stochastic elasticity of variance model mentioned in Kim et al. (2014) [1] [J.-H. Kim, J Lee, S.-P. Zhu, S.-H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus. 30 (2014)]. To find the explicit-form correction to the option price, we use Mellin transform approaches.