KYUNGPOOK Math. J. 64(2024), 219-233 https://doi.org/10.5666/KMJ.2024.64.2.219 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Generalized Fourier–Feynman Transform of Bounded Cylinder Functions on the Function Space $C_{a,b}[0,T]$

JAE GIL CHOI Department of Mathematics, Dankook University, Cheonan 31116, Republic of Korea e-mail: jgchoi@dankook.ac.kr

ABSTRACT. In this paper, we study the generalized Fourier–Feynman transform (GFFT) for functions on the general Wiener space $C_{a,b}[0,T]$. We establish an explicit evaluation formula for the analytic GFFT of bounded cylinder functions on $C_{a,b}[0,T]$. We start by examining certain cylinder functions which belong in a Banach algebra of bounded functions on $C_{a,b}[0,T]$. We then obtain an explicit formula for the analytic GFFT of the bounded cylinder functions.

1. Introduction

Let $C_0[0,T]$ be the classical Wiener space. In [4], Cameron and Storvick introduced a Banach algebra $\mathcal{S}(L_2[0,T])$ of analytic Feynman integrable functions on $C_0[0,T]$. Each function in $\mathcal{S}(L_2[0,T])$ is defined as a stochastic Fourier transform of a complex measure on $L_2[0,T]$. Cameron and Storvick showed that certain functions which arise naturally in quantum mechanics are elements of the Banach algebra $\mathcal{S}(L_2[0,T])$. Under strengthened measurability assumptions, Cameron and Storvick showed in [3] that the analytic Feynman integral of functions F having the form

(1.1)
$$F(x) = \exp\left\{\int_0^T \theta(s, x(s))ds\right\}$$

gives a solution of an integral equation formally equivalent to Schrödiner equation. In (1.1), $\{\theta(s, \cdot), s \in [0, T]\}$ is a family of the Fourier transforms of bounded measures on \mathbb{R} . The functions given by equation (1.1) also are elements of the Banach algebra $\mathcal{S}(L_2[0, T])$, see [3, 4, 17].

Received August 5, 2023; revised January 19, 2024; accepted March 10, 2024.

²⁰²⁰ Mathematics Subject Classification: 42B10, 46B09, 46G12.

Key words and phrases: generalized Brownian motion process, general Wiener space, generalized analytic Feynman integral, generalized analytic Fourier–Feynman transform, cylinder function.

A study of the analytic Fourier–Feynman transform is an interesting topic concerning with the analytic Feynman integral theory. The theory of the analytic Fourier–Feynman transform suggested by Brue [1] now plays a noteworthy role in infinite dimensional analysis.

In [9, 11], the authors used a generalized Brownian motion process (GBMP) to define a generalized analytic Feynman integral and an $L_p(1 \le p \le 2)$ analytic GFFT for functions on a function space $C_{a,b}[0,T]$. The general Wiener space $C_{a,b}[0,T]$ can be understood as a space of continuous sample functions of the GBMP. We refer to the references [9, 11, 19, 20] for more detailed informations about the definition of the GBMP associated with continuous functions $a(\cdot)$ and $b(\cdot)$ on the time interval [0,T], and the construction of the function space $C_{a,b}[0,T]$. Standard Brownian motion is centered and stationary in time, while in general, a GBMP is neither centered nor stationary in time.

In [9], the authors studied the L_p analytic GFFT of cylinder functions on $C_{a,b}[0,T]$. However, they provided the existences of only L_1 and L_2 GFFTs for cylinder functions on $C_{a,b}[0,T]$ because the drift term a(t) of the GBMP makes establishing the existences of the GFFTs very difficult. The purpose of this paper is to study the cylinder functions on $C_{a,b}[0,T]$ whose L_p analytic GFFT exists for all $p \in [1,2]$. For our purpose, we first examine certain cylinder functions which belong in a Banach algebra $\mathcal{F}(C_{a,b}[0,T])$ of functions on the function space $C_{a,b}[0,T]$. The class $\mathcal{F}(C_{a,b}[0,T])$ used in this paper is homeomorphic to the Banach algebra $\mathcal{S}(L^2_{a,b}[0,T])$ studied in [11]. We then provide an explicit formula for the GFFT of the cylinder function under our consideration.

2. Definitions and Preliminaries

In this section we first provide a brief background about the general Wiener space $C_{a,b}[0,T]$ induced by the GBMP.

Let $(C_{a,b}[0,T], \mathcal{B}(C_{a,b}[0,T]), \mu)$ denote the function space induced by a GBMP Y determined by continuous functions a(t) and b(t) where $\mathcal{B}(C_{a,b}[0,T])$ is the Borel σ -algebra induced by sup-norm, see [19] and [20, Chapters 3 and 4]. We assume in this paper that a(t) is an absolutely continuous real-valued function on [0,T] with $a(0) = 0, a'(t) \in L_2[0,T]$, and b(t) is an increasing, continuously differentiable real-valued function with b(0) = 0 and b'(t) > 0 for each $t \in [0,T]$. Then we can consider the coordinate process $X : [0,T] \times C_{a,b}[0,T] \to \mathbb{R}$ given by X(t,x) = x(t) which is the continuous realization of Y [20, Theorem 14.2]. For any $t \in [0,T]$ and $x \in C_{a,b}[0,T]$, we have $X(t,x) = x(t) \sim N(a(t),b(t))$. We then complete this function space to obtain the measure space $(C_{a,b}[0,T], W(C_{a,b}[0,T]), \mu)$ where $W(C_{a,b}[0,T])$ is the set of all μ -Carathéodory measurable subsets of $C_{a,b}[0,T]$.

A subset B of $C_{a,b}[0,T]$ is said to be scale-invariant measurable (s.i.m.) provided ρB is $\mathcal{W}(C_{a,b}[0,T])$ -measurable for all $\rho > 0$, and a s.i.m. set N is said to be a scale-invariant null set provided $\mu(\rho N) = 0$ for all $\rho > 0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.). A function F is said to be s.i.m. provided F is defined on a s.i.m. set and $F(\rho \cdot)$

is $\mathcal{W}(C_{a,b}[0,T])$ -measurable for every $\rho > 0$. If two functions F and G defined on $C_{a,b}[0,T]$ are equal s-a.e., then we write $F \approx G$.

Let $L^2_{a,b}[0,T]$ be the space of functions on [0,T] which are Lebesgue measurable and square integrable with respect to the Lebesgue–Stieltjes measures on [0,T]induced by $a(\cdot)$ and $b(\cdot)$: i.e.,

$$L^{2}_{a,b}[0,T] = \left\{ v : \int_{0}^{T} v^{2}(t)db(t) < \infty \text{ and } \int_{0}^{T} v^{2}(t)d|a|(t) < \infty \right\}$$

where $|a|(\cdot)$ is the total variation function of $a(\cdot)$. Then $L^2_{a,b}[0,T]$ is a separable Hilbert space with inner product defined by $(u,v)_{a,b} = \int_0^T u(t)v(t)d[b(t) + |a|(t)]$. For more details, see [9, 11].

Consider the function space

$$C'_{a,b}[0,T] = \left\{ w \in C_{a,b}[0,T] : w(t) = \int_0^t z(s)db(s) \text{ for some } z \in L^2_{a,b}[0,T] \right\}.$$

For $w\in C_{a,b}'[0,T],$ let the operator $D:C_{a,b}'[0,T]\to L^2_{a,b}[0,T]$ be defined by the formula

(2.1)
$$Dw(t) = \frac{w'(t)}{b'(t)}$$

Then $C'_{a,b} \equiv C'_{a,b}[0,T]$ with inner product $(w_1, w_2)_{C'_{a,b}} = \int_0^T Dw_1(t) Dw_2(t) db(t)$ is a separable Hilbert space.

Note that the two separable Hilbert spaces $L^2_{a,b}[0,T]$ and $C'_{a,b}[0,T]$ are (topologically) homeomorphic under the linear operator given by (2.1). The inverse operator of D is given by $(D^{-1}z)(t) = \int_0^t z(s)db(s)$ for $t \in [0,T]$. In the case that $a(t) \equiv 0$, then the operator $D: C'_{0,b}[0,T] \to L^2_{0,b}[0,T]$ is an isometry.

In this paper, in addition to the conditions put on a(t) above, we now add the condition

(2.2)
$$\int_0^T |a'(t)|^2 d|a|(t) < +\infty$$

from which it follows that

$$\int_0^T |Da(t)|^2 d[b(t) + |a|(t)] = \int_0^T \left| \frac{a'(t)}{b'(t)} \right|^2 d[b(t) + |a|(t)]$$

$$< M ||a'||_{L_2[0,T]} + M^2 \int_0^T |a'(t)|^2 d|a|(t) < +\infty,$$

where $M = \sup_{t \in [0,T]} (1/b'(t))$. Thus, the function $a : [0,T] \to \mathbb{R}$ satisfies the condition (2.2) if and only if $a(\cdot)$ is an element of $C'_{a,b}[0,T]$.

Let $\{e_n\}_{n=1}^{\infty}$ be a complete orthonormal set of functions in $(C'_{a,b}[0,T], \|\cdot\|_{C'_{a,b}})$ such that the De_n 's are of bounded variation on [0,T]. For $w \in C'_{a,b}[0,T]$ and

 $x \in C_{a,b}[0,T]$, we define the Paley–Wiener–Zygmund stochastic integral $(w, x)^{\sim}$ as follows:

$$(w,x)^{\sim} = \lim_{n \to \infty} \int_0^T \sum_{j=1}^n (w,e_j)_{C'_{a,b}} De_j(t) dx(t)$$

if the limit exists. We will emphasize the following fundamental facts. For each $w \in C'_{a,b}[0,T]$, the Paley–Wiener–Zygmund stochastic integral $(w,x)^{\sim}$ exists for μ -a.e. $x \in C_{a,b}[0,T]$. If $Dw = z \in L^2_{a,b}[0,T]$ is of bounded variation on [0,T], then the Paley–Wiener–Zygmund stochastic integral $(w,x)^{\sim}$ equals the Riemann–Stieltjes integral $\int_0^T Dw(t)dx(t) = \int_0^T z(t)dx(t)$. Also we note that for $w, x \in C'_{a,b}[0,T]$, $(w,x)^{\sim} = (w,x)_{C'_{a,b}}$. Furthermore for each $w \in C'_{a,b}[0,T]$, the Paley–Wiener–Zygmund stochastic integral $(w,x)^{\sim}$ is a Gaussian random variable on $C_{a,b}[0,T]$ with mean $(w,a)_{C'_{a,b}} = \int_0^T Dw(t)da(t)$ and variance $||w||^2_{C'_{a,b}} = \int_0^T \{Dw(t)\}^2 db(t)$.

3. Various Functions in the Banach Algebra $\mathcal{F}(C_{a,b}[0,T])$

The Banach algebra $\mathcal{F}(C_{a,b}[0,T])$ is defined as the space of all functions F on $C_{a,b}[0,T]$ having the form

(3.1)
$$F(x) = \int_{C'_{a,b}[0,T]} \exp\{i(w,x)^{\sim}\} d\sigma(w)$$

for s-a.e. $x \in C_{a,b}[0,T]$, where σ is in $M(C'_{a,b}[0,T])$, the space of complex-valued Borel measures on $\mathcal{B}(C'_{a,b}[0,T])$, the Borel σ -algebra of subsets of the Cameron– Martin space $C'_{a,b}[0,T]$. Note that every function given by (3.1) is s.i.m..

A function F on $C_{a,b}[0,T]$ is called a cylinder function if

(3.2)
$$F(x) = f((h_1, x)^{\sim}, \dots, (h_n, x)^{\sim}), \quad x \in C_{a,b}[0, T]$$

for μ -a.e. $x \in C_{a,b}[0,T]$, where f is a complex-valued Lebesgue measurable function on \mathbb{R}^n and $\{h_1, \ldots, h_n\}$ is a finite set of functions in $C'_{a,b}[0,T]$.

Example 3.1. Let $F_1: C_{a,b}[0,T] \to \mathbb{C}$ be given by

(3.3)
$$F_1(x) = f((w_1, x)^{\sim}, \dots, (w_n, x)^{\sim}),$$

where $\{w_1, \ldots, w_n\}$ is a lineally independent set of functions in $C'_{a,b}[0,T]$. The GFFT of functions given by the right-hand side of (3.3) are studied in [9]. Let $0 = t_0 < t_1 < \cdots < t_n \leq T$ be a subdivision of [0,T].

(i) For each $l \in \{1, \ldots, n\}$, let $w_l(t) = \int_0^t \chi_{[0,t_l]}(s) db(s)$ on [0,T]. Then we can rewrite equation (3.3) as

(3.4)
$$F_2(x) = f(x(t_1), \dots, x(t_n)).$$

(ii) For each $l \in \{1, \ldots, n\}$, let $w_l(t) = \int_0^t \chi_{[t_{l-1}, t_l]}(s) db(s)$ on [0, T]. Then we can rewrite equation (3.3) as

(3.5)
$$F_3(x) = f(x(t_1), x(t_2) - x(t_1), \dots, x(t_n) - x(t_{n-1})).$$

Letting a(t) = 0 and b(t) = t on [0, T], the general Wiener space $C_{a,b}[0, T]$ reduces to the classical Wiener space $C_0[0, T]$. In [2, 5, 6, 14], the authors studied certain classes of functions of the forms (3.4) and (3.5) on $C_0[0, T]$ and they used those classes to complete their researches concerning the analytic Feynman integral and the analytic Fourier–Feynman transform on $C_0[0, T]$.

Let $S: C'_{a,b}[0,T] \to C'_{a,b}[0,T]$ be the linear operator given by

(3.6)
$$Sw(t) = \int_0^t w(s)db(s)$$

Then the adjoint operator S^* of S is given by

$$S^*w(t) = w(T)b(t) - \int_0^t w(s)db(s) = \int_0^t [w(T) - w(s)]db(s).$$

It is easily shown that S^* is injective. For a more detailed study of the operator S and S^* , see [10].

Example 3.2. Let $F_4: C_{a,b}[0,T] \to \mathbb{C}$ be given by

(3.7)
$$F_4(x) = f\left(\int_0^T z_1(t)x(t)db(t), \dots, \int_0^T z_n(t)x(t)db(t)\right),$$

where $\{z_1, \ldots, z_n\}$ is a lineally independent subset of $L^2_{a,b}[0,T]$. Then

$$\{w_1,\ldots,w_n\} = \left\{\int_0^{\cdot} z_1(s)db(s),\ldots,\int_0^{\cdot} z_n(s)db(s)\right\}$$

is a lineally independent subset of $C'_{a,b}[0,T]$, see [10]. Since S^* is linear and injective, $\{S^*w_1,\ldots,S^*w_n\}$ also is an independent subset of $C'_{a,b}[0,T]$. Furthermore, by an integration by parts formula, it follows that

(3.8)
$$(S^* w_l, x)^{\sim} = \int_0^T x(t) Dw_l(t) db(t) = \int_0^T x(t) z_l(t) db(t)$$

for each $l \in \{1, \ldots, n\}$. Hence

$$F_4(x) = f((S^*w_1, x)^{\sim}, \dots, (S^*w_n, x)^{\sim})$$

is a cylinder function on $C_{a,b}[0,T]$.

Let $0 = t_0 < t_1 < \cdots < t_n \leq T$ be a subdivision of [0,T] and for each $l \in \{1,\ldots,n\}$, let $z_l(s) = \chi_{[0,t_l]}(s)$ on [0,T]. Then we can rewrite equation (3.7) as

$$F_5(x) = f\bigg(\int_0^{t_1} x(s)db(s), \int_0^{t_2} x(s)db(s), \dots, \int_0^{t_n} x(s)db(s)\bigg).$$

In view of the fact that $L_1(\mathbb{R}^n) \setminus L_{\infty}(\mathbb{R}^n) \neq \emptyset$, one can see that every cylinder function on $C_{a,b}[0,T]$ is not necessarily in the Banach algebra $\mathcal{F}(C_{a,b}[0,T])$. Thus the rest of this section, we consider a class of cylinder functions on $C_{a,b}[0,T]$ and provide necessary and sufficient conditions for the cylinder functions given by (3.2) to be in the Banach algebra $\mathcal{F}(C_{a,b}[0,T])$.

Let $M(\mathbb{R}^n)$ denote the space of complex-valued Borel measures on $\mathcal{B}(\mathbb{R}^n)$, the Borel σ -algebra of \mathbb{R}^n . Let ν be in $M(\mathbb{R}^n)$. Then the Fourier transform $\hat{\nu}$ of ν given by the formula

(3.9)
$$\widehat{\nu}(\vec{u}) = \int_{\mathbb{R}^n} \exp\left\{i\sum_{l=1}^n u_l v_l\right\} d\sigma(\vec{v}),$$

is a complex-valued function on \mathbb{R}^n .

Next theorem provide necessary and sufficient conditions for the cylinder functions on $C_{a,b}[0,T]$ to be in $\mathcal{F}(C_{a,b}[0,T])$. This result subsumes similar known results given in [5, 6, 7, 13].

Theorem 3.3. Let $\{w_1, \ldots, w_n\}$ be a linearly independent subset of $C'_{a,b}[0,T]$. Let $F: C_{a,b}[0,T] \to \mathbb{C}$ be a cylinder function on $C_{a,b}[0,T]$ given by the right-hand side of (3.3). Then F is in $\mathcal{F}(C_{a,b}[0,T])$ if and only if there exists a measure $\sigma \in M(\mathbb{R}^n)$ such that $\hat{\sigma} = f$ almost everywhere on \mathbb{R}^n .

We will provide a more basic theorem ensuring that various functions are in $\mathcal{F}(C_{a,b}[0,T])$.

Theorem 3.4. Let (Q, Σ, γ) be a σ -finite measure space and let $\varphi_l : Q \to C'_{a,b}[0,T]$ be $\Sigma - \mathcal{B}(C'_{a,b}[0,T])$ measurable for each $l \in \{1, \ldots, n\}$. Let $\theta : Q \times \mathbb{R}^n \to \mathbb{C}$ be given by $\theta(\eta; \cdot) = \hat{\nu}_{\eta}(\cdot)$ where ν_{η} is in $M(\mathbb{R}^n)$ for every $\eta \in Q$ and where the family $\{\nu_{\eta} : \eta \in Q\}$ satisfies:

- (i) $\nu_{\eta}(B)$ is a Σ -measurable function of η for every $B \in \mathcal{B}(\mathbb{R}^n)$,
- (*ii*) $\|\nu_{\eta}\| \in L_1(Q, \Sigma, \gamma).$

Under these conditions, the function $F: C_{a,b}[0,T] \to \mathbb{C}$ given by

(3.10)
$$F(x) = \int_{Q} \theta(\eta; (\varphi_1(\eta), x)^{\sim}, \dots, (\varphi_n(\eta), x)^{\sim}) d\gamma(\eta)$$

is in the class $\mathfrak{F}(C_{a,b}[0,T])$ and satisfies the inequality $||F|| \leq \int_{\Omega} ||\nu_{\eta}|| d\gamma(\eta)$.

Proof. Using the techniques similar to those used in [7], we can show that $\|\nu_{\eta}\|$ is measurable as a function of η , that θ is $\Sigma \times \mathcal{B}(\mathbb{R}^n)$ -measurable, and that the integrand in equation (3.10) is a measurable function of η for every $x \in C_{a,b}[0,T]$.

We define a measure τ on $\Sigma \times \mathcal{B}(\mathbb{R}^n)$ by

(3.11)
$$\tau(B) = \int_{Q} \nu_{\eta}(B^{(\eta)}) d\gamma(\eta) \text{ for } B \in \Sigma \times \mathcal{B}(\mathbb{R}^{n}).$$

Then by the first assertion of [17, Theorem 3.1] with the current condition (ii), τ satisfies $\|\tau\| \leq \int_{Q} \|\nu_{\eta}\| d\gamma(\eta)$. Now let $\Phi: Q \times \mathbb{R}^n \to C'_{a,b}[0,T]$ be defined by

(3.12)
$$\Phi(\eta; v_1, \dots, v_n) = \sum_{l=1}^n v_l \varphi_l(\eta).$$

Then Φ is $\Sigma \times \mathcal{B}(\mathbb{R}^n) - \mathcal{B}(C'_{a,b}[0,T])$ -measurable using the hypothesis for φ_l , $l \in \{1,\ldots,n\}$. Let $\sigma = \tau \circ \Phi^{-1}$. Then clearly $\sigma \in M(C'_{a,b}[0,T])$ and satisfies $\|\sigma\| \le \|\tau\|$.

From the change of variables theorem and the second assertion of [17, Theorem 3.1], it follows that for a.e. $x \in C_{a,b}[0,T]$ and for every $\rho > 0$,

$$F(\rho x) = \int_{Q} \widehat{\nu}_{\eta} ((\varphi_{1}(\eta), \rho x)^{\sim}, \dots, (\varphi_{n}(\eta), \rho x)^{\sim}) d\gamma(\eta)$$

$$= \int_{Q} \left[\int_{\mathbb{R}^{n}} \exp\left\{ i \sum_{l=1}^{n} \nu_{l}(\varphi_{l}(\eta), \rho x)^{\sim} \right\} d\nu_{\eta}(\nu_{1}, \dots, \nu_{n}) \right] d\gamma(\eta)$$

$$= \int_{Q \times \mathbb{R}^{n}} \exp\left\{ i \sum_{l=1}^{n} \nu_{l}(\varphi_{l}(\eta), \rho x)^{\sim} \right\} d\tau(\eta; \nu_{1}, \dots, \nu_{n})$$

$$= \int_{Q \times \mathbb{R}^{n}} \exp\left\{ i (\Phi(\eta; \nu_{1}, \dots, \nu_{n}), \rho x)^{\sim} \right\} d\tau(\eta; \nu_{1}, \dots, \nu_{n})$$

$$= \int_{C'_{a,b}[0,T]} \exp\left\{ i(w, \rho x)^{\sim} \right\} d\tau \circ \Phi^{-1}(w)$$

$$= \int_{C'_{a,b}[0,T]} \exp\left\{ i(w, \rho x)^{\sim} \right\} d\sigma(w).$$

Clearly, σ is a complex measure in $M(C'_{a,b}[0,T])$. Thus the function F given by equation (3.10) belongs to $\mathcal{F}(C_{a,b}[0,T])$ and satisfies the inequality

$$||F|| = ||\sigma|| \le ||\tau|| \le \int_Q ||\nu_\eta| d\gamma(\eta)$$

as desired.

The following corollaries are relevant to Feynman integration theories and quantum mechanics where exponential functions play an important role. Our next corollary comes from the fact that $\mathcal{F}(C_{a,b}[0,T])$ is a Banach algebra

Corollary 3.5. Let F be given by equation (3.10), and let $\Xi : \mathbb{C} \to \mathbb{C}$ be an entire function. Then $(\Xi \circ F)(x)$ is in $\mathcal{F}(C_{a,b}[0,T])$. In particular, $\exp\{F(x)\} \in \mathcal{F}(C_{a,b}[0,T])$.

Corollary 3.6 (Necessary condition of Theorem 3.3 with weaker condition). Let $\{g_1, \ldots, g_n\}$ be a finite (not necessarily linearly independent) subset of $C'_{a,b}[0,T]$. Given $\Theta = \hat{\nu}$ with $\nu \in M(\mathbb{R}^n)$, define a function $F : C_{a,b}[0,T] \to \mathbb{C}$ by

$$F(x) = \Theta((g_1, x)^{\sim}, \dots, (g_n, x)^{\sim}).$$

Then F is in the class $\mathcal{F}(C_{a,b}[0,T])$.

Proof. Let (Q, Σ, γ) be a probability space and for $l \in \{1, \ldots, n\}$, let $\varphi_l(\eta) \equiv g_l$. Take $\theta(\eta; \cdot) = \Theta(\cdot) = \hat{\nu}(\cdot)$. Then for all $\rho > 0$ and for a.e. $x \in C_{a,b}[0,T]$,

(3.14)

$$\int_{Q} \theta(\eta; (\varphi_{1}(\eta), \rho x)^{\sim}, \dots, (\varphi_{n}(\eta), \rho x)^{\sim}) d\gamma(\eta)$$

$$= \int_{Q} \Theta((g_{1}, \rho x)^{\sim}, \dots, (g_{n}, \rho x)^{\sim}) d\gamma(\eta)$$

$$= \Theta((g_{1}, \rho x)^{\sim}, \dots, (g_{n}, \rho x)^{\sim})$$

$$= F(\rho x).$$

Hence $F \in \mathcal{F}(C_{a,b}[0,T])$.

4. Generalized Fourier–Feynman Transform for the Bounded Cylinder Functions

In this section, we obtain an explicit formula for the L_p analytic GFFT of the cylinder functions in $\mathcal{F}(C_{a,b}[0,T])$. Let $\mathbb{C}_+ = \{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ and let $\widetilde{\mathbb{C}}_+ = \{\lambda \in \mathbb{C} \setminus \{0\} : \operatorname{Re}(\lambda) \ge 0\}$. Throughout the rest of this paper, $\lambda^{-1/2}$ (or $\lambda^{1/2}$) always is chosen to have positive real part for all $\lambda \in \widetilde{\mathbb{C}}_+$. Let F be a s.i.m. function on $C_{a,b}[0,T]$ such that $J_F(\lambda) = \int_{C_{a,b}[0,T]} F(\lambda^{-1/2}x)d\mu(x)$ exists and is finite for all $\lambda > 0$. If there exists a function $J_F^*(\lambda)$ analytic in \mathbb{C}_+ such that $J_F^*(\lambda) = J_F(\lambda)$ for all $\lambda > 0$, then $J_F^*(\lambda)$ is defined to be the analytic function space integral of F over $C_{a,b}[0,T]$ with parameter λ , and for $\lambda \in \mathbb{C}_+$ we write $E^{\operatorname{an}_{\lambda}}[F] \equiv E_x^{\operatorname{an}_{\lambda}}[F(x)] = J_F^*(\lambda)$. Let $q \in \mathbb{R} \setminus \{0\}$ and let F be a s.i.m. function whose analytic function space integral $J_F^*(\lambda)$ exists for all $\lambda \in \mathbb{C}_+$. If the following limit exists, we call it the analytic generalized Feynman integral of F with parameter q, and we write

(4.1)
$$E^{\operatorname{anf}_q}[F] \equiv E_x^{\operatorname{anf}_q}[F(x)] = \lim_{\lambda \to -iq} E_x^{\operatorname{an}_\lambda}[F(x)]$$

where $\lambda \to -iq$ through \mathbb{C}_+ .

We are now ready to state the definition of the analytic GFFT of functions F on $C_{a,b}[0,T]$.

Definition 4.1. Let F be a s.i.m. function on $C_{a,b}[0,T]$. For $\lambda \in \mathbb{C}_+$ and $y \in C_{a,b}[0,T]$, let $T_{\lambda}(F)(y) = E_x^{\operatorname{an}_{\lambda}}[F(y+x)]$. For $p \in (1,2]$, we define the L_p analytic GFFT, $T_q^{(p)}(F)$ of F, by the formula

$$T_q^{(p)}(F)(y) = \underset{\substack{\lambda \to -iq\\\lambda \in \mathbb{C}_+}}{\text{l.i.m.}} T_\lambda(F)(y)$$

if it exists; i.e., for each $\rho > 0$,

$$\lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} \int_{C_{a,b}[0,T]} \left| T_{\lambda}(F)(\rho y) - T_q^{(p)}(F)(\rho y) \right|^{p'} d\mu(y) = 0$$

where 1/p + 1/p' = 1. We define the L_1 analytic GFFT, $T_q^{(1)}(F)$ of F, by the formula

(4.2)
$$T_q^{(1)}(F)(y) = \lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} T_\lambda(F)(y) = \lim_{\substack{\lambda \to -iq \\ \lambda \in \mathbb{C}_+}} E_x^{\mathrm{an}_\lambda}[F(y+x)],$$

for s-a.e. $y \in C_{a,b}[0,T]$, if the limit exists.

Remark 4.2. In [2, pp. 5–7], Cameron and Storvick exhibited two measurable functions F and G on the classical Wiener space $C_0[0,T]$ such that F(x) = G(x)for a.e. $x \in C_0[0,T]$ and yet their Fourier–Feynman transforms are unequal a.e.. Based on this fact, Johnson and Skoug [15] defined the L_p analytic Fourier–Feynman transform for functions on $C_0[0,T]$ under the concept of the scale-invariant measurability. In fact, it was pointed out in [16] that the concept of 'scale-invariant measurability' is correct for the analytic Fourier–Feynman transform and the analytic Feynman integration theories. For more details, see [18, pp. 1155–1157].

We note that for $1 \le p \le 2$, $T_q^{(p)}(F)$ is defined only s-a.e.. If $T_q^{(p)}(F)$ exists and if $F \approx G$, then $T_q^{(p)}(G)$ exists and $T_q^{(p)}(G) \approx T_q^{(p)}(F)$. For more detailed studies of the GFFT of functions on $C_{a,b}[0,T]$, see [9, 11].

In view of (4.1) and (4.2), we set

(4.3)
$$T_q^{(1)}(F)(0) = E_x^{\inf_q}[F(x)].$$

Theorem 4.3 below is a simple modification of the result [12, Theorem 9]. The condition (4.4) below will guarantee the existence of the right-hand side of (4.5) below.

Theorem 4.3. Let $q_0 \in \mathbb{R} \setminus \{0\}$ and let F be given by equation (3.1). Suppose that the associated measure σ of F satisfies the condition

(4.4)
$$\int_{C'_{a,b}[0,T]} \exp\left\{\frac{1}{\sqrt{|2q_0|}} \|w\|_{C'_{a,b}} \|a\|_{C'_{a,b}}\right\} d|\sigma|(w) < +\infty.$$

Then, for all $p \in [1,2]$ and all $q \in \mathbb{R} \setminus [-q_0,q_0]$, the L_p analytic GFFT $T_q^{(p)}(F)$ exists and is given by the formula

(4.5)
$$T_q^{(p)}(F)(y) = \int_{C'_{a,b}[0,T]} \exp\left\{i(w,y)^{\sim} - \frac{i}{2q} \|w\|_{C'_{a,b}}^2 + i(-iq)^{-1/2}(w,a)_{C'_{a,b}}\right\} d\sigma(w)$$

for s-a.e. $y \in C_{a,b}[0,T]$.

In view of Theorems 3.4 and 4.3, we can provide the following evaluation formula for the L_p analytic GFFT of functions F in $\mathcal{F}(C_{a,b}[0,T])$.

Theorem 4.4. Let (Q, Σ, γ) , $\{\varphi_1, \ldots, \varphi_n\}$, $\{\nu_\eta : \eta \in Q\}$, θ , and F be as in Theorem 3.4. Suppose that given a positive real q_0 ,

(4.6)
$$\int_{Q\times\mathbb{R}^{n}} \exp\left\{\frac{\|a\|_{C_{a,b}'}}{\sqrt{2|q_{0}|}} \sum_{l=1}^{n} \|\varphi_{l}(\eta)\|_{C_{a,b}'} |v_{l}|\right\} d(|\nu_{\eta}|\times\gamma)(\eta,\vec{v})$$
$$= \int_{Q} \left[\int_{\mathbb{R}^{n}} \exp\left\{\frac{\|a\|_{C_{a,b}'}}{\sqrt{2|q_{0}|}} \sum_{l=1}^{n} \|\varphi_{l}(\eta)\|_{C_{a,b}'} |v_{l}|\right\} d|\nu_{\eta}|(\vec{v})\right] d\gamma(\eta) < +\infty.$$

Then for all $p \in [1,2]$ and all $q \in \mathbb{R} \setminus [-q_0,q_0]$, the L_p analytic GFFT $T_q^{(p)}(F)$ of F exists and is given by the formula

(4.7)
$$T_{q}^{(p)}(F)(y) = \int_{Q} \left[\int_{\mathbb{R}^{n}} \exp\left\{ i \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), y)^{\sim} - \frac{i}{2q} \right\| \sum_{l=1}^{n} v_{l}\varphi_{l}(\eta) \right\|_{C_{a,b}^{'}}^{2} + i(-iq)^{-1/2} \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), a)_{C_{a,b}^{'}} \right\} d\nu_{\eta}(v_{1}, \dots, v_{n}) \left] d\gamma(\eta)$$

for s-a.e. $y \in C_{a,b}[0,T]$. In particular, if $\{\varphi_1(\eta), \ldots, \varphi_n(\eta)\}$ is an orthogonal set of functions in $C'_{a,b}[0,T]$, then it follows that

(4.8)
$$T_{q}^{(p)}(F)(y) = \int_{Q} \left[\int_{\mathbb{R}^{n}} \exp\left\{ i \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), y)^{\sim} - \frac{i}{2q} \sum_{l=1}^{n} v_{l}^{2} \|\varphi_{l}(\eta)\|_{C_{a,b}^{\prime}}^{2} + i(-iq)^{-1/2} \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), a)_{C_{a,b}^{\prime}} \right\} d\nu_{\eta}(v_{1}, \dots, v_{n}) \right] d\gamma(\eta)$$

for s-a.e. $y \in C_{a,b}[0,T]$.

Proof. From (3.13) with $\rho = 1$, we see that the function F given by (3.10) is rewritten by

$$F(x) = \int_Q \left[\int_{\mathbb{R}^n} \exp\left\{ i \sum_{l=1}^n v_l(\varphi_l(\eta), x)^{\sim} \right\} d\nu_\eta(v_1, \dots, v_n) \right] d\gamma(\eta)$$
$$= \int_{C'_{a,b}[0,T]} \exp\left\{ i(w, x)^{\sim} \right\} d\tau \circ \Phi^{-1}(w)$$

for s-a.e. $y \in C_{a,b}[0,T]$, where τ and Φ are given by (3.11) and (3.12) respectively. Thus the condition (4.6) implies the condition (4.4) with $\sigma = \tau \circ \Phi^{-1}$, and by Theorem 4.3, the L_p analytic GFFT of F given by (3.10) exists and is given by the formula

$$T_{q}^{(p)}(F)(y) = \int_{C'_{a,b}[0,T]} \exp\left\{i(w,y)^{\sim} - \frac{i}{2q} \|w\|_{C'_{a,b}}^{2} + i(-iq)^{-1/2}(w,a)_{C'_{a,b}}\right\} d\tau \circ \Phi^{-1}(w)$$

Generalized Fourier-Feynman Transform on Function Space

$$= \int_{Q \times \mathbb{R}^{n}} \exp \left\{ i(\Phi(\eta; v_{1}, \dots, v_{n}), y)^{\sim} - \frac{i}{2q} \|\Phi(\eta; v_{1}, \dots, v_{n})\|_{C_{a,b}}^{2} + i(-iq)^{-1/2} (\Phi(\eta; v_{1}, \dots, v_{n}), a)_{C_{a,b}} \right\} d\tau(\eta; v_{1}, \dots, v_{n})$$

$$= \int_{Q} \left[\int_{\mathbb{R}^{n}} \exp \left\{ i \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), y)^{\sim} - \frac{i}{2q} \right\| \sum_{l=1}^{n} v_{l}\varphi_{l}(\eta) \right\|_{C_{a,b}}^{2} + i(-iq)^{-1/2} \sum_{l=1}^{n} v_{l}(\varphi_{l}(\eta), a)_{C_{a,b}} \right\} d\nu_{\eta}(v_{1}, \dots, v_{n}) \right] d\gamma(\eta)$$

for s-a.e. $y \in C_{a,b}[0,T]$. From this, we also have (4.8).

From (4.3) and (4.7) with p = 1, we have the following corollary.

Corollary 4.5. Let (Q, Σ, γ) , $\{\varphi_1, \ldots, \varphi_n\}$, $\{\nu_\eta : \eta \in Q\}$, θ , and F be as in Theorem 4.4. Then, for all $q \in \mathbb{R} \setminus [-q_0, q_0]$, the generalized analytic Feynman integral $E^{\inf_q}[F]$ of F exists and is given by the formula

$$E_x^{\inf_q}[F(x)] = \int_Q \left[\int_{\mathbb{R}^n} \exp\left\{ -\frac{i}{2q} \right\| \sum_{l=1}^n v_l \varphi_l(\eta) \right\|_{C'_{a,b}}^2 + i(-iq)^{-1/2} \sum_{l=1}^n v_l(\varphi_l(\eta), a)_{C'_{a,b}} \right\} d\nu_\eta(v_1, \dots, v_n) \left] d\gamma(\eta).$$

under the condition (4.6).

Given an orthonormal set $\{g_1, \ldots, g_n\}$ of functions in $C_{a,b}[0,T]$, let the function $F: C_{a,b}[0,T] \to \mathbb{C}$ be given by

(4.9)
$$F(x) = \widehat{\nu}((g_1, x)^{\sim}, \dots, (g_n, x)^{\sim}), \quad x \in C_{a,b}[0, T],$$

where $\hat{\nu}$ is the Fourier transform defined by equation (3.9) for a complex-valued Borel measure ν in $M(\mathbb{R}^n)$. Then F is a bounded cylinder function, since $|\hat{\nu}(\vec{u})| \leq ||\nu|| < +\infty$. In [8], Chang and Choi studied an inverse transform corresponding to the L_p analytic GFFT of the function given by (4.9). One of the main results in [8] is to establish the existence of the GFFT of the functions F given by (4.9).

Corollary 4.6. Let $q_0 \in \mathbb{R} \setminus \{0\}$ and let F be given by equation (4.9). Suppose that the associated measure ν of F satisfies the condition

(4.10)
$$\int_{\mathbb{R}^n} \exp\left\{\frac{\|a\|_{C'_{a,b}}}{\sqrt{|2q_0|}} \sum_{l=1}^n |v_l|\right\} d|\nu|(\vec{v}) < +\infty.$$

Then, for each $p \in [1,2]$ and any $q \in \mathbb{R} \setminus [-q_0,q_0]$, the L_p analytic GFFT $T_q^{(p)}(F)$ exists and is given by the formula

$$\begin{array}{l} T_q^{(p)}(F)(y) \\ (4.11) \\ = \int_{\mathbb{R}^n} \exp\left\{i\sum_{l=1}^n v_l(g_l,y)^{\sim} - \frac{i}{2q}\sum_{l=1}^n v_l^2 + i(-iq)^{-1/2}\sum_{l=1}^n v_l(g_l,a)_{C_{a,b}'}\right\} d\nu(\vec{v}) \end{array}$$

for s-a.e. $y \in C_{a,b}[0,T]$.

Proof. From equation (3.14), we already observe that

$$F(x) = \widehat{\nu} \big((g_1, x)^{\sim}, \dots, (g_n, x)^{\sim} \big)$$

=
$$\int_Q \theta \big(\eta; (\varphi_1(\eta), x)^{\sim}, \dots, (\varphi_n(\eta), x)^{\sim} \big) d\gamma(\eta)$$

for s-a.e. $x \in C_{a,b}[0,T]$, where (Q, Σ, γ) is any probability space, $\varphi_l(\eta) \equiv g_l$ for each $l \in \{1, \ldots, n\}$, and $\theta(\eta; \cdot) = \hat{\nu}(\cdot)$. Also, the condition (4.6) implies the condition

$$\begin{split} &\int_{Q\times\mathbb{R}^n} \exp\left\{\frac{\|a\|_{C'_{a,b}}}{\sqrt{2|q_0|}} \sum_{l=1}^n \|g_l\|_{C'_{a,b}} |v_l|\right\} d(|\nu_\eta|\times\gamma)(\eta,\vec{v}) \\ &= \int_Q \left[\int_{\mathbb{R}^n} \exp\left\{\frac{\|a\|_{C'_{a,b}}}{\sqrt{2|q_0|}} \sum_{l=1}^n |v_l|\right\} d|\nu_\eta|(\vec{v})\right] d\gamma(\eta) \\ &= \int_{\mathbb{R}^n} \exp\left\{\frac{\|a\|_{C'_{a,b}}}{\sqrt{2|q_0|}} \sum_{l=1}^n |v_l|\right\} d|\nu|(\vec{v}) < +\infty. \end{split}$$

Thus, in view of Theorem 4.4 with these setting, equation (4.8) yields the formula (4.11) as desired. $\hfill \Box$

From (4.3) and (4.11) with p = 1, we have the following corollary.

Corollary 4.7. Let q_0 and F be as in Corollary 4.6. Then, for any $q \in \mathbb{R} \setminus [-q_0, q_0]$, the generalized Feynman integral $E^{\inf_q}[F]$ exists and is given by the formula

$$E_x^{\inf_q}[F(x)] = \int_{\mathbb{R}^n} \exp\left\{-\frac{i}{2q} \sum_{l=1}^n v_l^2 + i(-iq)^{-1/2} \sum_{l=1}^n v_l(g_l, a)_{C'_{a,b}}\right\} d\nu(\vec{v}).$$

5. Examples

In this section, we present various functions to apply our results in previous section. Let the linear operator S on $C'_{a,b}[0,T]$ be given by equation (3.6). Let

(5.1)
$$\psi(t) = \sqrt{3}b(T)^{-3/2}b(t), \ t \in [0, T].$$

Using an integration by parts formula, we see that $\{S^*\psi\}$ is an orthonormal set in $C'_{a,b}[0,T]$, and using (3.8), we also have

$$\frac{1}{\sqrt{3}}b(T)^{3/2}(S^*\psi,x)^{\sim} = (S^*b,x)^{\sim} = \int_0^T x(t)Db(t)db(t) = \int_0^T x(t)db(t).$$

For given $\vec{m} = (m_1, \ldots, m_n) \in \mathbb{R}^n$ and $\vec{\sigma^2} = (\sigma_1^2, \ldots, \sigma_n^2) \in \mathbb{R}^n$ with $\sigma_l^2 > 0$, $l = 1, \ldots, n$, let $\nu_{\vec{m}, \vec{\sigma^2}}$ be the Gaussian measure given by

(5.2)
$$\nu_{\vec{m},\vec{\sigma^2}}(G) = \left(\prod_{l=1}^n 2\pi\sigma_l^2\right)^{-1/2} \int_G \exp\left\{-\sum_{l=1}^n \frac{(u_l - m_l)^2}{2\sigma_l^2}\right\} d\vec{u}, \quad G \in \mathcal{B}(\mathbb{R}^n).$$

Then $\nu_{\vec{m},\vec{\sigma^2}} \in M(\mathbb{R}^n)$ and

$$\widehat{\nu_{\vec{m},\vec{\sigma^2}}}(\vec{u}) = \exp\bigg\{-\frac{1}{2}\sum_{l=1}^n \sigma_l^2 u_l^2 + i\sum_{l=1}^n m_l u_l\bigg\}.$$

Under these setting, we can apply our results in previous section to the function having the form

$$F_6(x) = \exp\bigg\{-\frac{1}{2}\sum_{l=1}^n \sigma_l^2[(g_l, x)^{\sim}]^2 + i\sum_{l=1}^n m_l(g_l, x)^{\sim}\bigg\},\$$

where $\{g_1, \ldots, g_n\}$ is an orthonormal set of functions in $C'_{a,b}[0,T]$. For instance, taking n = 1, $g_1 = S^*\psi$, $\vec{m} = m_1 = 0$ and $\vec{\sigma^2} = \sigma_1^2 = 2b(T)^3/3$ in F_6 , we have

(5.3)
$$F_7(x) = \exp\left\{-\left(\int_0^T x(t)db(t)\right)^2\right\}.$$

Using (5.2), the Fubini theorem and the integration formula [10, equation (2.15)], it follows that for each nonzero real number q,

$$\begin{split} &\int_{\mathbb{R}^{n}} \exp\left\{\frac{\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}} \sum_{l=1}^{n} |v_{l}|\right\} d|\nu_{\vec{m},\vec{\sigma^{2}}}|(\vec{v}) \\ &= \prod_{l=1}^{n} \left[(2\pi\sigma_{l}^{2})^{-1/2} \int_{-\infty}^{0} \exp\left\{ -\frac{v_{l}^{2}}{2\sigma_{l}^{2}} + \left(\frac{m_{l}}{\sigma_{l}^{2}} - \frac{\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}}\right) v_{l} - \frac{m_{l}^{2}}{2\sigma_{l}^{2}} \right\} dv_{l} \\ &+ (2\pi\sigma_{l}^{2})^{-1/2} \int_{0}^{+\infty} \exp\left\{ -\frac{v_{l}^{2}}{2\sigma_{l}^{2}} + \left(\frac{m_{l}}{\sigma_{l}^{2}} + \frac{\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}}\right) v_{l} - \frac{m_{l}^{2}}{2\sigma_{l}^{2}} \right\} dv_{l} \right] \\ &< \prod_{l=1}^{n} \left[(2\pi\sigma_{l}^{2})^{-1/2} \int_{\mathbb{R}} \exp\left\{ -\frac{v_{l}^{2}}{2\sigma_{l}^{2}} + \left(\frac{m_{l}}{\sigma_{l}^{2}} - \frac{\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}}\right) v_{l} - \frac{m_{l}^{2}}{2\sigma_{l}^{2}} \right\} dv_{l} \right] \\ &+ (2\pi\sigma_{l}^{2})^{-1/2} \int_{\mathbb{R}} \exp\left\{ -\frac{v_{l}^{2}}{2\sigma_{l}^{2}} + \left(\frac{m_{l}}{\sigma_{l}^{2}} - \frac{\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}}\right) v_{l} - \frac{m_{l}^{2}}{2\sigma_{l}^{2}} \right\} dv_{l} \right] \\ &= \prod_{l=1}^{n} \left[\exp\left\{ \frac{\|a\|_{C_{a,b}^{'}}}{|2q|} - \frac{m_{l}\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}} \right\} + \exp\left\{ \frac{\|a\|_{C_{a,b}^{'}}}{|2q|} + \frac{m_{l}\|a\|_{C_{a,b}^{'}}}{\sqrt{|2q|}} \right\} \right] \\ &< +\infty. \end{split}$$

Thus for all $q \in \mathbb{R} \setminus \{0\}$, $T_q^{(p)}(F_6)$ (and hence $T_q^{(p)}(F_7)$) exists by Corollary 4.6. Also, we can apply Corollary 4.7 to obtain the generalized Feynman integrals $E^{\operatorname{anf}_q}[F_6]$ and $E^{\operatorname{anf}_q}[F_7]$.

The function

(5.4)
$$F_8(x) = \exp\left\{i\int_0^T x(t)db(s)\right\}$$

also is a function under our consideration, because

$$F_{8}(x) = \exp\{i(S^{*}b, x)^{\sim}\} = \exp\left\{\frac{i}{\sqrt{3}}b(T)^{3/2}(S^{*}\psi, x)^{\sim}\right\}$$
$$= \int_{\mathbb{R}} \exp\{i(S^{*}\psi, x)^{\sim}v\}d\delta_{1}(v) = \widehat{\delta_{1}}((S^{*}\psi, x)^{\sim})$$

where ψ is given by (5.1) and δ_1 is the Dirac measure concentrated at $v = b(T)^{3/2}/\sqrt{3}$ in \mathbb{R} . Clearly, δ_1 satisfies condition (4.10) with ν replaced with δ_1 , for all $q_0 \in \mathbb{R} \setminus \{0\}$.

The functions given by equations (5.3) and (5.4) arise naturally in quantum mechanics.

References

- M. D. Brue, A Functional Transform for Feynman Integrals Similar to the Fourier Transform, Ph.D. Thesis, University of Minnesota, Minneapolis(1972)
- [2] R. H. Cameron and D. A. Storvick, An L₂ analytic Fourier-Feynman transform, Michigan Math. J., 23(1976), 1–30.
- [3] R. H. Cameron and D. A. Storvick, Analytic Feynman integral solutions of an integral equation related to the Schroedinger equation, J. Anal. Math., **38**(1980), 34–66.
- [4] R. H. Cameron and D. A. Storvick, Some Banach Algebras of Analytic Feynman Integrable Functionals. Analytic Functions (Proc. Seventh Conf., Kozubnik, 1979), 18–67, Lecture Notes in Math. vol. 798, Springer, Berlin(1980)
- [5] K. S. Chang, G. W. Johnson and D. L. Skoug, Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions, J. Korean Math. Soc., 21(1)(1984), 21–29.
- [6] K. S. Chang, G. W. Johnson and D. L. Skoug, Necessary and sufficient conditions for membership in the Banach algebras S for certain classes of functions, Rend. Circ. Mat. Palermo (2) Suppl., 17(1987), 153–171.
- [7] K. S. Chang, G. W. Johnson and D. L. Skoug, Functions in the Fresnel class, Proc. Amer. Math. Soc., 100(1987), 309–318.
- [8] S. J. Chang and J. G. Choi, *Generalized Fourier–Feynman transform and sequential* transforms on function space, J. Korean Soc. Math., **49**(2012), 1065–1082.
- S. J. Chang, J. G. Choi and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc., 355(2003), 2925–2948.
- [10] S. J. Chang, J. G. Choi and D. Skoug, Evaluation formulas for conditional function space integrals I, Stoch. Anal. Appl., 25(2007), 141–168.
- [11] S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a first variation on function space, Integral Transforms Spec. Funct., 14(2003), 375–393.
- [12] J. G. Choi, D. Skoug and S. J. Chang, Generalized analytic Fourier–Feynman transform of functionals in a Banach algebra $\mathcal{F}_{A_1,A_2}^{a,b}$, J. Funct. Spaces Appl., **2013**(2013), Article ID 954098, 1–12.

- [13] D. M. Chung and H. T. Hwang, Cylinder functions in the Fresnel class of functions on abstract Wiener spaces, Proc. Amer. Math. Soc., 115(1992), 381–388.
- [14] T. Huffman, C. Park and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc., 347(1995), 661–673.
- [15] G. W. Johnson and D. L. Skoug, An L_p analytic Fourier-Feynman transform, Michigan Math. J., 26(1979), 103–127.
- [16] G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math., 83(1979), 157–176.
- [17] G. W. Johnson and D. L. Skoug, Notes on the Feynman integral, III: The Schroedinger equation, Pacific J. Math., 105(1983), 321–358.
- [18] D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 34(2004), 1147–1175.
- [19] J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math., 15(1971), 37–46.
- [20] J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker Inc., New York(1973)