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Abstract. In this paper, we study the generalized Fourier–Feynman transform (GFFT)

for functions on the general Wiener space Ca,b[0, T ]. We establish an explicit evaluation

formula for the analytic GFFT of bounded cylinder functions on Ca,b[0, T ]. We start by ex-

amining certain cylinder functions which belong in a Banach algebra of bounded functions

on Ca,b[0, T ]. We then obtain an explicit formula for the analytic GFFT of the bounded

cylinder functions.

1. Introduction

Let C0[0, T ] be the classical Wiener space. In [4], Cameron and Storvick in-
troduced a Banach algebra S(L2[0, T ]) of analytic Feynman integrable functions
on C0[0, T ]. Each function in S(L2[0, T ]) is defined as a stochastic Fourier trans-
form of a complex measure on L2[0, T ]. Cameron and Storvick showed that certain
functions which arise naturally in quantum mechanics are elements of the Banach
algebra S(L2[0, T ]). Under strengthened measurability assumptions, Cameron and
Storvick showed in [3] that the analytic Feynman integral of functions F having the
form

(1.1) F (x) = exp

{∫ T

0

θ(s, x(s))ds

}
gives a solution of an integral equation formally equivalent to Schrödiner equation.
In (1.1), {θ(s, ·), s ∈ [0, T ]} is a family of the Fourier transforms of bounded mea-
sures on R. The functions given by equation (1.1) also are elements of the Banach
algebra S(L2[0, T ]), see [3, 4, 17].
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A study of the analytic Fourier–Feynman transform is an interesting topic con-
cerning with the analytic Feynman integral theory. The theory of the analytic
Fourier–Feynman transform suggested by Brue [1] now plays a noteworthy role in
infinite dimensional analysis.

In [9, 11], the authors used a generalized Brownian motion process (GBMP) to
define a generalized analytic Feynman integral and an Lp(1 ≤ p ≤ 2) analytic GFFT
for functions on a function space Ca,b[0, T ]. The general Wiener space Ca,b[0, T ] can
be understood as a space of continuous sample functions of the GBMP. We refer to
the references [9, 11, 19, 20] for more detailed informations about the definition of
the GBMP associated with continuous functions a(·) and b(·) on the time interval
[0, T ], and the construction of the function space Ca,b[0, T ]. Standard Brownian
motion is centered and stationary in time, while in general, a GBMP is neither
centered nor stationary in time.

In [9], the authors studied the Lp analytic GFFT of cylinder functions on
Ca,b[0, T ]. However, they provided the existences of only L1 and L2 GFFTs for
cylinder functions on Ca,b[0, T ] because the drift term a(t) of the GBMP makes
establishing the existences of the GFFTs very difficult. The purpose of this paper
is to study the cylinder functions on Ca,b[0, T ] whose Lp analytic GFFT exists for
all p ∈ [1, 2]. For our purpose, we first examine certain cylinder functions which be-
long in a Banach algebra F(Ca,b[0, T ]) of functions on the function space Ca,b[0, T ].
The class F(Ca,b[0, T ]) used in this paper is homeomorhic to the Banach algebra
S(L2

a,b[0, T ]) studied in [11]. We then provide an explicit formula for the GFFT of
the cylinder function under our consideration.

2. Definitions and Preliminaries

In this section we first provide a brief background about the general Wiener
space Ca,b[0, T ] induced by the GBMP.

Let (Ca,b[0, T ],B(Ca,b[0, T ]), µ) denote the function space induced by a GBMP
Y determined by continuous functions a(t) and b(t) where B(Ca,b[0, T ]) is the Borel
σ-algebra induced by sup-norm, see [19] and [20, Chapters 3 and 4]. We assume
in this paper that a(t) is an absolutely continuous real-valued function on [0, T ]
with a(0) = 0, a′(t) ∈ L2[0, T ], and b(t) is an increasing, continuously differentiable
real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ]. Then we can
consider the coordinate process X : [0, T ]× Ca,b[0, T ] → R given by X(t, x) = x(t)
which is the continuous realization of Y [20, Theorem 14.2]. For any t ∈ [0, T ]
and x ∈ Ca,b[0, T ], we have X(t, x) = x(t) ∼ N(a(t), b(t)). We then complete
this function space to obtain the measure space (Ca,b[0, T ],W(Ca,b[0, T ]), µ) where
W(Ca,b[0, T ]) is the set of all µ-Carathéodory measurable subsets of Ca,b[0, T ].

A subset B of Ca,b[0, T ] is said to be scale-invariant measurable (s.i.m.) provided
ρB is W(Ca,b[0, T ])-measurable for all ρ > 0, and a s.i.m. set N is said to be a scale-
invariant null set provided µ(ρN) = 0 for all ρ > 0. A property that holds except on
a scale-invariant null set is said to hold scale-invariant almost everywhere (s-a.e.).
A function F is said to be s.i.m. provided F is defined on a s.i.m. set and F (ρ · )
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is W(Ca,b[0, T ])-measurable for every ρ > 0. If two functions F and G defined on
Ca,b[0, T ] are equal s-a.e., then we write F ≈ G.

Let L2
a,b[0, T ] be the space of functions on [0, T ] which are Lebesgue measurable

and square integrable with respect to the Lebesgue–Stieltjes measures on [0, T ]
induced by a(·) and b(·): i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(t)db(t) <∞ and

∫ T

0

v2(t)d|a|(t) <∞
}

where |a|(·) is the total variation function of a(·). Then L2
a,b[0, T ] is a separable

Hilbert space with inner product defined by (u, v)a,b =
∫ T

0
u(t)v(t)d[b(t) + |a|(t)].

For more details, see [9, 11].
Consider the function space

C ′
a,b[0, T ] =

{
w ∈ Ca,b[0, T ] : w(t) =

∫ t

0

z(s)db(s) for some z ∈ L2
a,b[0, T ]

}
.

For w ∈ C ′
a,b[0, T ], let the operator D : C ′

a,b[0, T ] → L2
a,b[0, T ] be defined by the

formula

(2.1) Dw(t) =
w′(t)

b′(t)
.

Then C ′
a,b ≡ C ′

a,b[0, T ] with inner product (w1, w2)C′
a,b

=
∫ T

0
Dw1(t)Dw2(t)db(t) is

a separable Hilbert space.
Note that the two separable Hilbert spaces L2

a,b[0, T ] and C
′
a,b[0, T ] are (topolog-

ically) homeomorphic under the linear operator given by (2.1). The inverse operator

of D is given by (D−1z)(t) =
∫ t

0
z(s)db(s) for t ∈ [0, T ]. In the case that a(t) ≡ 0,

then the operator D : C ′
0,b[0, T ] → L2

0,b[0, T ] is an isometry.
In this paper, in addition to the conditions put on a(t) above, we now add the

condition

(2.2)

∫ T

0

|a′(t)|2d|a|(t) < +∞

from which it follows that∫ T

0

|Da(t)|2d[b(t) + |a|(t)] =
∫ T

0

∣∣∣∣a′(t)b′(t)

∣∣∣∣2d[b(t) + |a|(t)]

< M∥a′∥L2[0,T ] +M2

∫ T

0

|a′(t)|2d|a|(t) < +∞,

where M = supt∈[0,T ](1/b
′(t)). Thus, the function a : [0, T ] → R satisfies the

condition (2.2) if and only if a(·) is an element of C ′
a,b[0, T ].

Let {en}∞n=1 be a complete orthonormal set of functions in (C ′
a,b[0, T ], ∥ · ∥C′

a,b
)

such that the Den’s are of bounded variation on [0, T ]. For w ∈ C ′
a,b[0, T ] and
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x ∈ Ca,b[0, T ], we define the Paley–Wiener–Zygmund stochastic integral (w, x)∼ as
follows:

(w, x)∼ = lim
n→∞

∫ T

0

n∑
j=1

(w, ej)C′
a,b
Dej(t)dx(t)

if the limit exists. We will emphasize the following fundamental facts. For each
w ∈ C ′

a,b[0, T ], the Paley–Wiener–Zygmund stochastic integral (w, x)∼ exists for µ-

a.e. x ∈ Ca,b[0, T ]. If Dw = z ∈ L2
a,b[0, T ] is of bounded variation on [0, T ], then the

Paley–Wiener–Zygmund stochastic integral (w, x)∼ equals the Riemann–Stieltjes

integral
∫ T

0
Dw(t)dx(t) =

∫ T

0
z(t)dx(t). Also we note that for w, x ∈ C ′

a,b[0, T ],
(w, x)∼ = (w, x)C′

a,b
. Furthermore for each w ∈ C ′

a,b[0, T ], the Paley–Wiener–

Zygmund stochastic integral (w, x)∼ is a Gaussian random variable on Ca,b[0, T ]

with mean (w, a)C′
a,b

=
∫ T

0
Dw(t)da(t) and variance ∥w∥2C′

a,b
=

∫ T

0
{Dw(t)}2db(t).

3. Various Functions in the Banach Algebra F(Ca,b[0, T ])

The Banach algebra F(Ca,b[0, T ]) is defined as the space of all functions F on
Ca,b[0, T ] having the form

(3.1) F (x) =

∫
C′

a,b[0,T ]

exp{i(w, x)∼}dσ(w)

for s-a.e. x ∈ Ca,b[0, T ], where σ is in M(C ′
a,b[0, T ]), the space of complex-valued

Borel measures on B(C ′
a,b[0, T ]), the Borel σ-algebra of subsets of the Cameron–

Martin space C ′
a,b[0, T ]. Note that every function given by (3.1) is s.i.m..

A function F on Ca,b[0, T ] is called a cylinder function if

(3.2) F (x) = f((h1, x)
∼, . . . , (hn, x)

∼), x ∈ Ca,b[0, T ]

for µ-a.e. x ∈ Ca,b[0, T ], where f is a complex-valued Lebesgue measurable function
on Rn and {h1, . . . , hn} is a finite set of functions in C ′

a,b[0, T ].

Example 3.1. Let F1 : Ca,b[0, T ] → C be given by

(3.3) F1(x) = f((w1, x)
∼, . . . , (wn, x)

∼),

where {w1, . . . , wn} is a lineally independent set of functions in C ′
a,b[0, T ]. The

GFFT of functions given by the right-hand side of (3.3) are studied in [9]. Let
0 = t0 < t1 < · · · < tn ≤ T be a subdivision of [0, T ].

(i) For each l ∈ {1, . . . , n}, let wl(t) =
∫ t

0
χ[0,tl](s)db(s) on [0, T ]. Then we can

rewrite equation (3.3) as

(3.4) F2(x) = f(x(t1), . . . , x(tn)).

(ii) For each l ∈ {1, . . . , n}, let wl(t) =
∫ t

0
χ[tl−1,tl](s)db(s) on [0, T ]. Then we

can rewrite equation (3.3) as

(3.5) F3(x) = f(x(t1), x(t2)− x(t1), . . . , x(tn)− x(tn−1)).
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Letting a(t) = 0 and b(t) = t on [0, T ], the general Wiener space Ca,b[0, T ]
reduces to the classical Wiener space C0[0, T ]. In [2, 5, 6, 14], the authors studied
certain classes of functions of the forms (3.4) and (3.5) on C0[0, T ] and they used
those classes to complete their researches concerning the analytic Feynman integral
and the analytic Fourier–Feynman transform on C0[0, T ].

Let S : C ′
a,b[0, T ] → C ′

a,b[0, T ] be the linear operator given by

(3.6) Sw(t) =

∫ t

0

w(s)db(s).

Then the adjoint operator S∗ of S is given by

S∗w(t) = w(T )b(t)−
∫ t

0

w(s)db(s) =

∫ t

0

[w(T )− w(s)]db(s).

It is easily shown that S∗ is injective. For a more detailed study of the operator S
and S∗, see [10].

Example 3.2. Let F4 : Ca,b[0, T ] → C be given by

(3.7) F4(x) = f

(∫ T

0

z1(t)x(t)db(t), . . . ,

∫ T

0

zn(t)x(t)db(t)

)
,

where {z1, . . . , zn} is a lineally independent subset of L2
a,b[0, T ]. Then

{w1, . . . , wn} =

{∫ ·

0

z1(s)db(s), . . . ,

∫ ·

0

zn(s)db(s)

}
is a lineally independent subset of C ′

a,b[0, T ], see [10]. Since S
∗ is linear and injective,

{S∗w1, . . . , S
∗wn} also is an independent subset of C ′

a,b[0, T ]. Furthermore, by an
integration by parts formula, it follows that

(3.8) (S∗wl, x)
∼ =

∫ T

0

x(t)Dwl(t)db(t) =

∫ T

0

x(t)zl(t)db(t)

for each l ∈ {1, . . . , n}. Hence

F4(x) = f((S∗w1, x)
∼, . . . , (S∗wn, x)

∼)

is a cylinder function on Ca,b[0, T ].
Let 0 = t0 < t1 < · · · < tn ≤ T be a subdivision of [0, T ] and for each

l ∈ {1, . . . , n}, let zl(s) = χ[0,tl](s) on [0, T ]. Then we can rewrite equation (3.7) as

F5(x) = f

(∫ t1

0

x(s)db(s),

∫ t2

0

x(s)db(s), . . . ,

∫ tn

0

x(s)db(s)

)
.
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In view of the fact that L1(Rn) \ L∞(Rn) ̸= ∅, one can see that every cylinder
function on Ca,b[0, T ] is not necessarily in the Banach algebra F(Ca,b[0, T ]). Thus
the rest of this section, we consider a class of cylinder functions on Ca,b[0, T ] and
provide necessary and sufficient conditions for the cylinder functions given by (3.2)
to be in the Banach algebra F(Ca,b[0, T ]).

Let M(Rn) denote the space of complex-valued Borel measures on B(Rn), the
Borel σ-algebra of Rn. Let ν be inM(Rn). Then the Fourier transform ν̂ of ν given
by the formula

(3.9) ν̂(u⃗) =

∫
Rn

exp

{
i

n∑
l=1

ulvl

}
dσ(v⃗),

is a complex-valued function on Rn.
Next theorem provide necessary and sufficient conditions for the cylinder func-

tions on Ca,b[0, T ] to be in F(Ca,b[0, T ]). This result subsumes similar known results
given in [5, 6, 7, 13].

Theorem 3.3. Let {w1, . . . , wn} be a linearly independent subset of C ′
a,b[0, T ]. Let

F : Ca,b[0, T ] → C be a cylinder function on Ca,b[0, T ] given by the right-hand side
of (3.3). Then F is in F(Ca,b[0, T ]) if and only if there exists a measure σ ∈M(Rn)
such that σ̂ = f almost everywhere on Rn.

We will provide a more basic theorem ensuring that various functions are in
F(Ca,b[0, T ]).

Theorem 3.4. Let (Q,Σ, γ) be a σ-finite measure space and let φl : Q→ C ′
a,b[0, T ]

be Σ–B(C ′
a,b[0, T ]) measurable for each l ∈ {1, . . . , n}. Let θ : Q × Rn → C be

given by θ(η; ·) = ν̂η(·) where νη is in M(Rn) for every η ∈ Q and where the family
{νη : η ∈ Q} satisfies:

(i) νη(B) is a Σ-measurable function of η for every B ∈ B(Rn),

(ii) ∥νη∥ ∈ L1(Q,Σ, γ).

Under these conditions, the function F : Ca,b[0, T ] → C given by

(3.10) F (x) =

∫
Q

θ
(
η; (φ1(η), x)

∼, . . . , (φn(η), x)
∼)dγ(η)

is in the class F(Ca,b[0, T ]) and satisfies the inequality ∥F∥ ≤
∫
Q
∥νη∥dγ(η).

Proof. Using the techniques similar to those used in [7], we can show that ∥νη∥
is measurable as a function of η, that θ is Σ × B(Rn)-measurable, and that the
integrand in equation (3.10) is a measurable function of η for every x ∈ Ca,b[0, T ].

We define a measure τ on Σ×B(Rn) by

(3.11) τ(B) =

∫
Q

νη(B
(η))dγ(η) for B ∈ Σ×B(Rn).
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Then by the first assertion of [17, Theorem 3.1] with the current condition (ii), τ
satisfies ∥τ∥ ≤

∫
Q
∥νη∥dγ(η). Now let Φ : Q× Rn → C ′

a,b[0, T ] be defined by

(3.12) Φ(η; v1, . . . , vn) =

n∑
l=1

vlφl(η).

Then Φ is Σ × B(Rn)–B(C ′
a,b[0, T ])-measurable using the hypothesis for φl, l ∈

{1, . . . , n}. Let σ = τ ◦Φ−1. Then clearly σ ∈M(C ′
a,b[0, T ]) and satisfies ∥σ∥ ≤ ∥τ∥.

From the change of variables theorem and the second assertion of [17, Theorem
3.1], it follows that for a.e. x ∈ Ca,b[0, T ] and for every ρ > 0,

(3.13)

F (ρx) =

∫
Q

ν̂η
(
(φ1(η), ρx)

∼, . . . , (φn(η), ρx)
∼)dγ(η)

=

∫
Q

[ ∫
Rn

exp

{
i

n∑
l=1

vl(φl(η), ρx)
∼
}
dνη(v1, . . . , vn)

]
dγ(η)

=

∫
Q×Rn

exp

{
i

n∑
l=1

vl(φl(η), ρx)
∼
}
dτ(η; v1, . . . , vn)

=

∫
Q×Rn

exp
{
i(Φ(η; v1, . . . , vn), ρx)

∼}dτ(η; v1, . . . , vn)
=

∫
C′

a,b[0,T ]

exp
{
i(w, ρx)∼

}
dτ ◦ Φ−1(w)

=

∫
C′

a,b[0,T ]

exp
{
i(w, ρx)∼

}
dσ(w).

Clearly, σ is a complex measure in M(C ′
a,b[0, T ]). Thus the function F given by

equation (3.10) belongs to F(Ca,b[0, T ]) and satisfies the inequality

∥F∥ = ∥σ∥ ≤ ∥τ∥ ≤
∫
Q

∥νη∥dγ(η)

as desired. 2

The following corollaries are relevant to Feynman integration theories and quan-
tum mechanics where exponential functions play an important role. Our next corol-
lary comes from the fact that F(Ca,b[0, T ]) is a Banach algebra

Corollary 3.5. Let F be given by equation (3.10), and let Ξ : C → C be an
entire function. Then (Ξ ◦ F )(x) is in F(Ca,b[0, T ]). In particular, exp{F (x)} ∈
F(Ca,b[0, T ]).

Corollary 3.6 (Necessary condition of Theorem 3.3 with weaker condi-
tion). Let {g1, . . . , gn} be a finite (not necessarily linearly independent) subset of
C ′

a,b[0, T ]. Given Θ = ν̂ with ν ∈M(Rn), define a function F : Ca,b[0, T ] → C by

F (x) = Θ((g1, x)
∼, . . . , (gn, x)

∼).
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Then F is in the class F(Ca,b[0, T ]).

Proof. Let (Q,Σ, γ) be a probability space and for l ∈ {1, . . . , n}, let φl(η) ≡ gl.
Take θ(η; ·) = Θ(·) = ν̂(·). Then for all ρ > 0 and for a.e. x ∈ Ca,b[0, T ],

(3.14)

∫
Q

θ
(
η; (φ1(η), ρx)

∼, . . . , (φn(η), ρx)
∼)dγ(η)

=

∫
Q

Θ
(
(g1, ρx)

∼, . . . , (gn, ρx)
∼)dγ(η)

= Θ
(
(g1, ρx)

∼, . . . , (gn, ρx)
∼)

= F (ρx).

Hence F ∈ F(Ca,b[0, T ]). 2

4. Generalized Fourier–Feynman Transform for the Bounded Cylinder
Functions

In this section, we obtain an explicit formula for the Lp analytic GFFT of
the cylinder functions in F(Ca,b[0, T ]). Let C+ = {λ ∈ C : Re(λ) > 0} and let

C̃+ = {λ ∈ C \ {0} : Re(λ) ≥ 0}. Throughout the rest of this paper, λ−1/2(or

λ1/2) always is chosen to have positive real part for all λ ∈ C̃+. Let F be a s.i.m.
function on Ca,b[0, T ] such that JF (λ) =

∫
Ca,b[0,T ]

F (λ−1/2x)dµ(x) exists and is

finite for all λ > 0. If there exists a function J∗
F (λ) analytic in C+ such that

J∗
F (λ) = JF (λ) for all λ > 0, then J∗

F (λ) is defined to be the analytic function
space integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ C+ we write
Eanλ [F ] ≡ Eanλ

x [F (x)] = J∗
F (λ). Let q ∈ R \ {0} and let F be a s.i.m. function

whose analytic function space integral J∗
F (λ) exists for all λ ∈ C+. If the following

limit exists, we call it the analytic generalized Feynman integral of F with parameter
q, and we write

(4.1) Eanfq [F ] ≡ Eanfq
x [F (x)] = lim

λ→−iq
Eanλ

x [F (x)]

where λ→ −iq through C+.

We are now ready to state the definition of the analytic GFFT of functions F
on Ca,b[0, T ].

Definition 4.1. Let F be a s.i.m. function on Ca,b[0, T ]. For λ ∈ C+ and y ∈
Ca,b[0, T ], let Tλ(F )(y) = Eanλ

x [F (y + x)]. For p ∈ (1, 2], we define the Lp analytic

GFFT, T
(p)
q (F ) of F , by the formula

T (p)
q (F )(y) = l. i.m.

λ→−iq
λ∈C+

Tλ(F )(y)

if it exists; i.e., for each ρ > 0,

lim
λ→−iq
λ∈C+

∫
Ca,b[0,T ]

∣∣Tλ(F )(ρy)− T (p)
q (F )(ρy)

∣∣p′

dµ(y) = 0
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where 1/p + 1/p′ = 1. We define the L1 analytic GFFT, T
(1)
q (F ) of F , by the

formula

(4.2) T (1)
q (F )(y) = lim

λ→−iq
λ∈C+

Tλ(F )(y) = lim
λ→−iq
λ∈C+

Eanλ
x [F (y + x)],

for s-a.e. y ∈ Ca,b[0, T ], if the limit exists.

Remark 4.2. In [2, pp. 5–7], Cameron and Storvick exhibited two measurable
functions F and G on the classical Wiener space C0[0, T ] such that F (x) = G(x)
for a.e. x ∈ C0[0, T ] and yet their Fourier–Feynman transforms are unequal a.e..
Based on this fact, Johnson and Skoug [15] defined the Lp analytic Fourier–Feynman
transform for functions on C0[0, T ] under the concept of the scale-invariant mea-
surability. In fact, it was pointed out in [16] that the concept of ‘scale-invariant
measurability’ is correct for the analytic Fourier–Feynman transform and the an-
alytic Feynman integration theories. For more details, see [18, pp. 1155–1157].

We note that for 1 ≤ p ≤ 2, T
(p)
q (F ) is defined only s-a.e.. If T

(p)
q (F ) exists and

if F ≈ G, then T
(p)
q (G) exists and T

(p)
q (G) ≈ T

(p)
q (F ). For more detailed studies of

the GFFT of functions on Ca,b[0, T ], see [9, 11].
In view of (4.1) and (4.2), we set

(4.3) T (1)
q (F )(0) = Eanfq

x [F (x)].

Theorem 4.3 below is a simple modification of the result [12, Theorem 9]. The
condition (4.4) below will guarantee the existence of the right-hand side of (4.5)
below.

Theorem 4.3. Let q0 ∈ R \ {0} and let F be given by equation (3.1). Suppose that
the associated measure σ of F satisfies the condition

(4.4)

∫
C′

a,b[0,T ]

exp

{
1√
|2q0|

∥w∥C′
a,b

∥a∥C′
a,b

}
d|σ|(w) < +∞.

Then, for all p ∈ [1, 2] and all q ∈ R \ [−q0, q0], the Lp analytic GFFT T
(p)
q (F )

exists and is given by the formula

(4.5)

T (p)
q (F )(y)

=

∫
C′

a,b[0,T ]

exp

{
i(w, y)∼ − i

2q
∥w∥2C′

a,b
+ i(−iq)−1/2(w, a)C′

a,b

}
dσ(w)

for s-a.e. y ∈ Ca,b[0, T ].

In view of Theorems 3.4 and 4.3, we can provide the following evaluation formula
for the Lp analytic GFFT of functions F in F(Ca,b[0, T ]).
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Theorem 4.4. Let (Q,Σ, γ), {φ1, . . . , φn}, {νη : η ∈ Q}, θ, and F be as in
Theorem 3.4. Suppose that given a positive real q0,

(4.6)

∫
Q×Rn

exp

{∥a∥C′
a,b√

2|q0|

n∑
l=1

∥φl(η)∥C′
a,b

|vl|
}
d(|νη| × γ)(η, v⃗)

=

∫
Q

[ ∫
Rn

exp

{∥a∥C′
a,b√

2|q0|

n∑
l=1

∥φl(η)∥C′
a,b

|vl|
}
d|νη|(v⃗)

]
dγ(η) < +∞.

Then for all p ∈ [1, 2] and all q ∈ R \ [−q0, q0], the Lp analytic GFFT T
(p)
q (F ) of F

exists and is given by the formula

(4.7)

T (p)
q (F )(y) =

∫
Q

[ ∫
Rn

exp

{
i

n∑
l=1

vl(φl(η), y)
∼ − i

2q

∥∥∥∥ n∑
l=1

vlφl(η)

∥∥∥∥2
C′

a,b

+ i(−iq)−1/2
n∑

l=1

vl(φl(η), a)C′
a,b

}
dνη(v1, . . . , vn)

]
dγ(η)

for s-a.e. y ∈ Ca,b[0, T ]. In particular, if {φ1(η), . . . , φn(η)} is an orthogonal set of
functions in C ′

a,b[0, T ], then it follows that

(4.8)

T (p)
q (F )(y) =

∫
Q

[ ∫
Rn

exp

{
i

n∑
l=1

vl(φl(η), y)
∼ − i

2q

n∑
l=1

v2l ∥φl(η)∥2C′
a,b

+ i(−iq)−1/2
n∑

l=1

vl(φl(η), a)C′
a,b

}
dνη(v1, . . . , vn)

]
dγ(η)

for s-a.e. y ∈ Ca,b[0, T ].

Proof. From (3.13) with ρ = 1, we see that the function F given by (3.10) is
rewritten by

F (x) =

∫
Q

[ ∫
Rn

exp

{
i

n∑
l=1

vl(φl(η), x)
∼
}
dνη(v1, . . . , vn)

]
dγ(η)

=

∫
C′

a,b[0,T ]

exp
{
i(w, x)∼

}
dτ ◦ Φ−1(w)

for s-a.e. y ∈ Ca,b[0, T ], where τ and Φ are given by (3.11) and (3.12) respectively.
Thus the condition (4.6) implies the condition (4.4) with σ = τ ◦ Φ−1, and by
Theorem 4.3, the Lp analytic GFFT of F given by (3.10) exists and is given by the
formula

T (p)
q (F )(y)

=

∫
C′

a,b[0,T ]

exp

{
i(w, y)∼ − i

2q
∥w∥2C′

a,b
+ i(−iq)−1/2(w, a)C′

a,b

}
dτ ◦ Φ−1(w)
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=

∫
Q×Rn

exp

{
i(Φ(η; v1, . . . , vn), y)

∼ − i

2q
∥Φ(η; v1, . . . , vn)∥2C′

a,b

+ i(−iq)−1/2(Φ(η; v1, . . . , vn), a)C′
a,b

}
dτ(η; v1, . . . , vn)

=

∫
Q

[ ∫
Rn

exp

{
i

n∑
l=1

vl(φl(η), y)
∼ − i

2q

∥∥∥∥ n∑
l=1

vlφl(η)

∥∥∥∥2
C′

a,b

+ i(−iq)−1/2
n∑

l=1

vl(φl(η), a)C′
a,b

}
dνη(v1, . . . , vn)

]
dγ(η)

for s-a.e. y ∈ Ca,b[0, T ]. From this, we also have (4.8). 2

From (4.3) and (4.7) with p = 1, we have the following corollary.

Corollary 4.5. Let (Q,Σ, γ), {φ1, . . . , φn}, {νη : η ∈ Q}, θ, and F be as in
Theorem 4.4. Then, for all q ∈ R \ [−q0, q0], the generalized analytic Feynman
integral Eanfq [F ] of F exists and is given by the formula

Eanfq
x [F (x)] =

∫
Q

[ ∫
Rn

exp

{
− i

2q

∥∥∥∥ n∑
l=1

vlφl(η)

∥∥∥∥2
C′

a,b

+ i(−iq)−1/2
n∑

l=1

vl(φl(η), a)C′
a,b

}
dνη(v1, . . . , vn)

]
dγ(η).

under the condition (4.6).

Given an orthonormal set {g1, . . . , gn} of functions in Ca,b[0, T ], let the function
F : Ca,b[0, T ] → C be given by

(4.9) F (x) = ν̂((g1, x)
∼, . . . , (gn, x)

∼), x ∈ Ca,b[0, T ],

where ν̂ is the Fourier transform defined by equation (3.9) for a complex-valued
Borel measure ν in M(Rn). Then F is a bounded cylinder function, since |ν̂(u⃗)| ≤
∥ν∥ < +∞. In [8], Chang and Choi studied an inverse transform corresponding to
the Lp analytic GFFT of the function given by (4.9). One of the main results in [8]
is to establish the existence of the GFFT of the functions F given by (4.9).

Corollary 4.6. Let q0 ∈ R\{0} and let F be given by equation (4.9). Suppose that
the associated measure ν of F satisfies the condition

(4.10)

∫
Rn

exp

{∥a∥C′
a,b√

|2q0|

n∑
l=1

|vl|
}
d|ν|(v⃗) < +∞.

Then, for each p ∈ [1, 2] and any q ∈ R \ [−q0, q0], the Lp analytic GFFT T
(p)
q (F )

exists and is given by the formula

(4.11)

T (p)
q (F )(y)

=

∫
Rn

exp

{
i

n∑
l=1

vl(gl, y)
∼ − i

2q

n∑
l=1

v2l + i(−iq)−1/2
n∑

l=1

vl(gl, a)C′
a,b

}
dν(v⃗)
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for s-a.e. y ∈ Ca,b[0, T ].

Proof. From equation (3.14), we already observe that

F (x) = ν̂
(
(g1, x)

∼, . . . , (gn, x)
∼)

=

∫
Q

θ
(
η; (φ1(η), x)

∼, . . . , (φn(η), x)
∼)dγ(η)

for s-a.e. x ∈ Ca,b[0, T ], where (Q,Σ, γ) is any probability space, φl(η) ≡ gl for each
l ∈ {1, . . . , n}, and θ(η; ·) = ν̂(·). Also, the condition (4.6) implies the condition∫

Q×Rn

exp

{∥a∥C′
a,b√

2|q0|

n∑
l=1

∥gl∥C′
a,b

|vl|
}
d(|νη| × γ)(η, v⃗)

=

∫
Q

[ ∫
Rn

exp

{∥a∥C′
a,b√

2|q0|

n∑
l=1

|vl|
}
d|νη|(v⃗)

]
dγ(η)

=

∫
Rn

exp

{∥a∥C′
a,b√

2|q0|

n∑
l=1

|vl|
}
d|ν|(v⃗) < +∞.

Thus, in view of Theorem 4.4 with these setting, equation (4.8) yields the formula
(4.11) as desired. 2

From (4.3) and (4.11) with p = 1, we have the following corollary.

Corollary 4.7. Let q0 and F be as in Corollary 4.6. Then, for any q ∈ R\[−q0, q0],
the generalized Feynman integral Eanfq [F ] exists and is given by the formula

Eanfq
x [F (x)] =

∫
Rn

exp

{
− i

2q

n∑
l=1

v2l + i(−iq)−1/2
n∑

l=1

vl(gl, a)C′
a,b

}
dν(v⃗).

5. Examples

In this section, we present various functions to apply our results in previous
section. Let the linear operator S on C ′

a,b[0, T ] be given by equation (3.6). Let

(5.1) ψ(t) =
√
3b(T )−3/2b(t), t ∈ [0, T ].

Using an integration by parts formula, we see that {S∗ψ} is an orthonormal set in
C ′

a,b[0, T ], and using (3.8), we also have

1√
3
b(T )3/2(S∗ψ, x)∼ = (S∗b, x)∼ =

∫ T

0

x(t)Db(t)db(t) =

∫ T

0

x(t)db(t).

For given m⃗ = (m1, . . . ,mn) ∈ Rn and σ⃗2 = (σ2
1 , . . . , σ

2
n) ∈ Rn with σ2

l > 0,
l = 1, . . . , n, let ν

m⃗,σ⃗2 be the Gaussian measure given by

(5.2) ν
m⃗,σ⃗2(G) =

( n∏
l=1

2πσ2
l

)−1/2 ∫
G

exp

{
−

n∑
l=1

(ul −ml)
2

2σ2
l

}
du⃗, G ∈ B(Rn).
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Then ν
m⃗,σ⃗2 ∈M(Rn) and

ν̂
m⃗,σ⃗2(u⃗) = exp

{
− 1

2

n∑
l=1

σ2
l u

2
l + i

n∑
l=1

mlul

}
.

Under these setting, we can apply our results in previous section to the function
having the form

F6(x) = exp

{
− 1

2

n∑
l=1

σ2
l [(gl, x)

∼]2 + i

n∑
l=1

ml(gl, x)
∼
}
,

where {g1, . . . , gn} is an orthonormal set of functions in C ′
a,b[0, T ]. For instance,

taking n = 1, g1 = S∗ψ, m⃗ = m1 = 0 and σ⃗2 = σ2
1 = 2b(T )3/3 in F6, we have

(5.3) F7(x) = exp

{
−

(∫ T

0

x(t)db(t)

)2}
.

Using (5.2), the Fubini theorem and the integration formula [10, equation
(2.15)], it follows that for each nonzero real number q,∫

Rn

exp

{∥a∥C′
a,b√

|2q|

n∑
l=1

|vl|
}
d|ν

m⃗,σ⃗2 |(v⃗)

=

n∏
l=1

[
(2πσ2

l )
−1/2

∫ 0

−∞
exp

{
− v2l

2σ2
l

+

(
ml

σ2
l

−
∥a∥C′

a,b√
|2q|

)
vl −

m2
l

2σ2
l

}
dvl

+ (2πσ2
l )

−1/2

∫ +∞

0

exp

{
− v2l

2σ2
l

+

(
ml

σ2
l

+
∥a∥C′

a,b√
|2q|

)
vl −

m2
l

2σ2
l

}
dvl

]

<

n∏
l=1

[
(2πσ2

l )
−1/2

∫
R
exp

{
− v2l

2σ2
l

+

(
ml

σ2
l

−
∥a∥C′

a,b√
|2q|

)
vl −

m2
l

2σ2
l

}
dvl

+ (2πσ2
l )

−1/2

∫
R
exp

{
− v2l

2σ2
l

+

(
ml

σ2
l

+
∥a∥C′

a,b√
|2q|

)
vl −

m2
l

2σ2
l

}
dvl

]

=

n∏
l=1

[
exp

{∥a∥2C′
a,b

|2q|
−
ml∥a∥C′

a,b√
|2q|

}
+ exp

{∥a∥2C′
a,b

|2q|
+
ml∥a∥C′

a,b√
|2q|

}]
< +∞.

Thus for all q ∈ R\{0}, T (p)
q (F6) (and hence T

(p)
q (F7)) exists by Corollary 4.6. Also,

we can apply Corollary 4.7 to obtain the generalized Feynman integrals Eanfq [F6]
and Eanfq [F7].

The function

(5.4) F8(x) = exp

{
i

∫ T

0

x(t)db(s)

}



232 Jae Gil Choi

also is a function under our consideration, because

F8(x) = exp{i(S∗b, x)∼} = exp

{
i√
3
b(T )3/2(S∗ψ, x)∼

}
=

∫
R
exp{i(S∗ψ, x)∼v}dδ1(v) = δ̂1((S

∗ψ, x)∼)

where ψ is given by (5.1) and δ1 is the Dirac measure concentrated at v =
b(T )3/2/

√
3 in R. Clearly, δ1 satisfies condition (4.10) with ν replaced with δ1,

for all q0 ∈ R \ {0}.
The functions given by equations (5.3) and (5.4) arise naturally in quantum

mechanics.
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