• 제목/요약/키워드: Transcription start site

검색결과 50건 처리시간 0.034초

T Cell Immunoglobulin Mucin Domain (TIM)-3 Promoter Activity in a Human Mast Cell Line

  • Kim, Jung Sik;Shin, Dong-Chul;Woo, Min-Yeong;Kwon, Myung-Hee;Kim, Kyongmin;Park, Sun
    • IMMUNE NETWORK
    • /
    • 제12권5호
    • /
    • pp.207-212
    • /
    • 2012
  • T cell immunoglobulin mucin domain (TIM)-3 is an immunomodulatory molecule and upregulated in T cells by several cytokines. TIM-3 also influences mast cell function but its transcriptional regulation in mast cells has not been clarified. Therefore, we examined the transcript level and the promoter activity of TIM-3 in mast cells. The TIM-3 transcript level was assessed by real-time RT-PCR and promoter activity by luciferase reporter assay. TIM-3 mRNA levels were increased in HMC-1, a human mast cell line by TGF-${\beta}1$ stimulation but not by stimulation with interferon (IFN)-${\alpha}$, IFN-${\lambda}$, TNF-${\alpha}$, or IL-10. TIM-3 promoter -349~+144 bp region relative to the transcription start site was crucial for the basal and TGF-${\beta}1$-induced TIM-3 promoter activities in HMC-1 cells. TIM-3 promoter activity was increased by over-expression of Smad2 and Smad4, downstream molecules of TGF-${\beta}1$ signaling. Our results localize TIM-3 promoter activity to the region spanning -349 to +144 bp in resting and TGF-${\beta}1$ stimulated mast cells.

Molecular Cloning and Sequencing of the Bacillus subtilis cdd Gene Encoding Dooxycytindine-Cytidine Deaminase

  • Song, Bang-Ho;Neuhard, Jan
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.512.1-512
    • /
    • 1986
  • The cdd gene of Bacillus subtilis, encoding the deoxycytidinecytidine deaminase of pyrimidine nucleotide biosynthesis has been cloned into the EcoRl site of pBR322. The recombinant plasmid, pSol, promoted the synthesis of 100-140 fold elevated levels of the enzyme. A comparison of the polypeptides encoded by cdd complementing and non-complementing plasmids in the mini cell showed the gene product to have a molecular mass of approximately 14 kDa. The nucleotide sequence of the gene and 460 base pairs upstream from the coding region was determined. An open-reading frame, encoding a protein with a calculated molecular mass of 14337 Da, was deduced to be the coding region for cdd. However, the enzyme has an apparent molecular mass of 54 kDa as determined by gel filteration, whereas sucrose density gradient centrifugation shows 58 kDa. It means that the enzyme could be forming a tetramer in a physiological state. About 28 amino acids of the N-tetramer in a physiological state. About 28 amino acids of the N-terminal presumably form a signal for membrane translocation and six cystein residues are contained in the structure. S1 nuclease mapping indicated that transcription of cdd is initiated 17 base pairs upstream from the translational start. The structural characterization of the odd gene was performed.

  • PDF

Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression

  • Zhao, Hongying;Zhang, Jun;Shao, Haiyu;Liu, Jianwen;Jin, Mengran;Chen, Jinping;Huang, Yazeng
    • Molecules and Cells
    • /
    • 제40권3호
    • /
    • pp.211-221
    • /
    • 2017
  • Transforming growth factor ${\beta}1$ $(TGF{\beta}1)/Smad4$ signaling plays a pivotal role in maintenance of the dynamic balance between bone formation and resorption. The microRNA miR-155 has been reported to exert a significant role in the differentiation of macrophage and dendritic cells. The goal of this study was to determine whether miR-155 regulates osteoclast differentiation through $TGF{\beta}1/Smad4$ signaling. Here, we present that $TGF{\beta}1$ elevated miR-155 levels during osteoclast differentiation through the stimulation of M-CSF and RANKL. Additionally, we found that silencing Smad4 attenuated the upregulation of miR-155 induced by $TGF{\beta}1$. The results of luciferase reporter experiments and ChIP assays demonstrated that $TGF{\beta}1$ promoted the binding of Smad4 to the miR-155 promoter at a site located in 454 bp from the transcription start site in vivo, further verifying that miR-155 is a transcriptional target of the $TGF{\beta}1/Smad4$ pathway. Subsequently, TRAP staining and qRT-PCR analysis revealed that silencing Smad4 impaired the $TGF{\beta}1$-mediated inhibition on osteoclast differentiation. Finally, we found that miR-155 may target SOCS1 and MITF to suppress osteoclast differentiation. Taken together, we provide the first evidence that $TGF{\beta}1/Smad4$ signaling affects osteoclast differentiation by regulation of miR-155 expression and the use of miR-155 as a potential therapeutic target for osteoclast-related diseases shows great promise.

출아효모에서 Paf1 복합체의 구성원들이 H3의 네번째 라이신의 메틸화에 미치는 영향 (Effects of Paf1 complex components on H3K4 methylation in budding yeast)

  • 오준수;이정신
    • 미생물학회지
    • /
    • 제52권4호
    • /
    • pp.487-494
    • /
    • 2016
  • 출아 효모에서의 Paf1 복합체는 총5개의 단백질로 구성되어있고, 구성성분들은 출아효모, 초파리, 식물들, 그리고 인간에 이르기까지 구조적으로, 기능적으로 잘 보존되어 있다. RNA 중합효소 II와 결합한 상태로 전사 개시부위부터 종결부위까지 함께 이동하며, 여러 전사인자들의 유입을 위한 매개체로 작용하여, 유전자 발현 조절의 핵심적인 역할을 수행한다. Paf1 복합체는 H2BK123 monoubiquitination에 기여하고, histone crosstalk에 의해 간접적으로 H3K4의 di-, tri-methylation에 기여하는 것이 알려져 있다. 하지지만, Paf1 복합체 구성요소들의 개별적인 기능에 대해서는 연구가 되어있지 않다. 이 연구에서는, Paf1 복합체 구성요소들의 단일 결핍 돌연변이 균주를 만든 후, 이들의 H2BK123 monoubiquitination 및 H3K4 mono-, di-, tri-methylation에 미치는 영향을 관찰했다. 놀랍게도, ${\Delta}paf1$, ${\Delta}rtf1$, ${\Delta}ctr9$ 돌연변이 균주에서는 H2Bub에 영향을 받는 H3K4me2와 H3K4me3뿐 아니라, H2B monoubiquitination에 영향을 받지 않는 H3K4 monomethylation의 심각한 감소를 관찰했다. 그러나, methyl기 전달 효소인 Set1의 발현 정도는 이 돌연변이 균주들에서 변하지 않았다. 이러한 결과로부터, Paf1 복합체가 Set1의 활성이나 Set1 복합체의 안정성을 직접 조절함으로써 H3K4 methylation을 조절할 수 있음을 제시한다.

Construction of Mammalian Cell Expression Vector for pAcGFP-bFLIP(L) Fusion Protein and Its Expression in Follicular Granulosa Cells

  • Yang, Run Jun;Li, Wu Feng;Li, Jun Ya;Zhang, Lu Pei;Gao, Xue;Chen, Jin Bao;Xu, Shang Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.401-409
    • /
    • 2010
  • FLICE inhibitory protein (FLIP) is one of the important anti-apoptotic proteins in the Fas/FasL apoptotic path which has death effect domains, mimicking the pro-domain of procaspase-8. To reveal the intracellular signal transduction molecules involved in the process of follicular development in the bovine ovary, we cloned the c-FLIP(L) gene in bovine ovary tissue with the reverse transcription polymerase chain reaction (RT-PCR), deleted the termination codon in its cDNA, and directionally cloned the amplified c-FLIP(L) gene into eukaryotic expression vector pAcGFP-Nl, including AcGFP, and successfully constructed the fusion protein recombinant plasmid. After identifying by restrictive enzyme BglII/EcoRI and sequencing, pAcGFP-bFLIP(L) was then transfected into follicular granulosa cells, mediated by Lipofectamine 2000, the expression of AcGFP observed and the transcription and expression of c-FLIP(L) detected by RT-PCR and Western blot. The results showed that the cattle c-FLIP(L) was successfully cloned; the pAcGFPbFLIP(L) fusion protein recombinant plasmid was successfuly constructed by introducing a BglII/EcoRI cloning site at the two ends of the c-FLIP(L) open reading frame and inserting a Kozak sequence before the start codon. AcGFP expression was detected as early as 24 h after transfection. The percentage of AcGFP positive cells reached about 65% after 24 h. A 1,483 bp transcription was amplified by RT-PCR, and a 83 kD target protein was detected by Western blot. Construction of the pAcGFP-bFLIP(L) recombinant plasmid should be helpful for further understanding the mechanism of regulation of c-FLIP(L) on bovine oocyte formation and development.

Correlation analyses of CpG island methylation of cluster of differentiation 4 protein with gene expression and T lymphocyte subpopulation traits

  • Zhao, Xueyan;Wang, Yanping;Guo, Jianfeng;Wang, Jiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1141-1149
    • /
    • 2018
  • Objective: Cluster of differentiation 4 protein (CD4) gene is an important immune related gene which plays a significant role in T cell development and host resistance during viral infection. Methods: In order to unravel the relationship of CpG island methylation level of CD4 gene with its gene expression and T lymphocyte subpopulation traits, we used one typical Chinese indigenous breed (Dapulian, DP) and one commercial breed (Landrace), then predicted the CpG island of CD4 gene, determined the methylation status of CpG sites by bisulfite sequencing polymerase chain reaction (BSP), and carried out the correlation analyses of methylation frequencies of CpG sites with mRNA expression and T lymphocyte subpopulation traits. Results: There was one CpG island predicted in the upstream -2 kb region and exon one of porcine CD4 gene, which located 333 bp upstream from the start site of gene and contained nine CpG sites. The correlation analysis results indicated that the methylation frequency of CpG_2 significantly correlated with CD4 mRNA expression in the DP and Landrace combined population, though it did not reach significance level in DP and Landrace separately. Additionally, 15 potential binding transcription factors (TFs) were predicted within the CpG island, and one of them (Jumonji) contained CpG_2 site, suggesting that it may influence the CD4 gene expression through the potential binding TFs. We also found methylation frequency of CpG_2 negatively correlated with T lymphocyte subpopulation traits CD4+CD8-CD3-, CD4-CD8+CD3- and CD4+/CD8+, and positively correlated with CD4-CD8+CD3+ and CD4+CD8+CD3+ (for all correlation, p<0.01) in DP and Landrace combined population. Thus, the CpG_2 was a critical methylation site for porcine CD4 gene expression and T lymphocyte subpopulation traits. Conclusion: We speculated that increased methylation frequency of CpG_2 may lead to the decreased expression of CD4, which may have some kind of influence on T lymphocyte subpopulation traits and the immunity of DP population.

Schizosaccharomyces pombe에서 SNF2에 속하는 hrp2+ 유전자의 특성 연구 (Characterization of hrp2 + Gene Related to SNF2 Family in Schizosaccharomyces pombe)

  • Park, In-Soon
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.137-141
    • /
    • 2002
  • 본 연구는 분열형 효모 Schizosaccharomyces pombe에서 여러 가지 DNA 절제회복 및 유전자 발현에 관여하는 SNF2/SW12유전자의 기능을 연구하기 위하여 이에 관련되는 유전자를 분리하고 그 특성을 연구하였다. SNF2 motif 의 conserved sequence를 primer로 하여 중합효소 연쇄반응(PCR) 방법으로 480 bp 크기의 DNA fragment를 분리하여, 이를 probe로 하여 효모에서 hrp2+ 유전자를 분리하였다. 분리한 hrp2+ 유전자의 sequence homology를 비교한 결과 3개의 SNF2 motif를 포함하고 있었다. hrp2+유전자의 전사체 크기는 4.7 kb임을 Northern hybridization으로 확인하였다. hrp2+유전자의 전사 개시 부위를 알기 위하여 primer extension분석을 한 결과, 첫 번째 ATG에서 약47 base pair 위쪽에 위치함을 확인하였다. 또한 특성 연구를 위하여 Northern hybridization으로 hrp2+ 유전자의 UV와 MMS에 대한 유도성을 조사한 결과 자외선에 대해서만 유전자의 발현이 유도되었다. 이 결과 분리한 hrp2+는 UV-inducible 유전자임을 확인하였다.

  • PDF

Description of Nearly Completed Mitochondrial Genome Sequences of the Garden Chafer Polyphylla laticollis manchurica, Endangered in Korea (Insecta: Coleoptera)

  • Kim, Min Jee;Kim, Ki-Gyoung;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제27권1호
    • /
    • pp.185-202
    • /
    • 2013
  • In this study, we present the nearly complete mitogenome sequences of the garden chafer, Polyphylla laticollis manchurica, which is listed as an endangered species in Korea. The P. l. manchurica mitogenome, which includes unfinished whole A+T-rich region and a partial srRNA was 14,473-bp long, possessing typical sets of genes (13 PCGs, 22 tRNA genes, and 2 rRNA genes). Gene arrangement of the P. l. manchurica mitogenome was identical to the common one found in the majority of insects. The 5 bp-long motif sequence (TAGTA) that has been suggested to be the possible binding site for the transcription termination peptide for the major-strand was also found in the P. l. manchurica mitogenome between $tRNA^{Ser}$(UCN) and ND1. The start codon for COI gene and ATPase8 was designated as a typical TTG. All tRNAs of the P. l. manchurica showed a stable canonical clover-leaf structure of other mt tRNAs, except for $tRNA^{Ser}$(AGN), DHU arm of which could not form stable stemloop structure. As has been previously determined, the high A/T content was unanimously observed in P. l. manchurica in terms of A/T bias in the third codon position (73.5%) compared with the first (66.4%) and second codon position (66.2%). The PCGs encoded in major-strands are slightly T-skewed, whereas those of the minor-strand are A-skewed, indicating strand asymmetry in nucleotide composition in the Coleoptera including P. l. manchurica.

포도 캠벨 품종으로부터 과육 특이발현 VVTL1-homolog 유전자의 분석 (Gene Analysis of A Fruit-specific Thaumatin-like Protein, VVTL1-homolog, from Campbell Cultivar of Grape)

  • 김인중;김석만
    • 식물조직배양학회지
    • /
    • 제28권5호
    • /
    • pp.255-261
    • /
    • 2001
  • VVTL1은 포도 과육에서 특이적으로 다량 발현되는, PR5 계열의 thaumatin과 높은 상동성을 나타내는 단백질로서, 품종에 따라 염기서열의 차이를 나타낸다고 알려져 있다. 현재까지 포도의 VVTL1에 대해서 몇몇 연구가 진행되었지만, 우리나라에서 가장 많이 재배되는 품종인 캠벨에서는 전혀 이루어지지 않았다. 본 연구에서는 캠벨 품종으로부터 VVTL1-homolog 유전자의 게놈 DNA를 분리하여, 염기서열을 분석하였다. VVTL1-homolog 유전자는 일반적으로 PR5 유전자의 구조와 동일한 구조인, intron이 없는 하나의 exon으로만 구성되어 있었다. 염기서열로부터 추론된 VVTL1-homolog 단백질의 아미노산 서열은 VVTL1을 비롯한 다른 품종의 포도에서 분리된 TLP와는 달리 염기성의 등전점을 가지고 있었다. Primer extension 분석을 통해 전사개시 부위를 결정하였고, promoter영역을 포함하는 5'upstream 지역에 전사에 중요한 TATA box (4개)와 CAAT box (1개)가 존재하였으나, 이들의 위치와 수는 다른 PR5 유전자의 promoter와는 다랐다. 이러한 연구결과는 VVTL1-homolog 유전자의 발현이 과육 성숙과정동안 abscisic acid와 스트레스 또는 자극에 의해 발현이 유도되고 있음을 제시해준다. 포도 과육특이발현 promoter인 VVTL1-homolog 유전자의 promoter 분리는, 유전자의 도입에 의해 유용형질을 과육에 나타내는 포도품종을 개발하고자 할 때 효율적으로 사용될 수 있을 것으로 사료된다.

  • PDF

Identification of the ${\beta}$-Glucosidase Gene from Bifidobacterium animalis subsp. lactis and Its Expression in B. bifidum BGN4

  • Youn, So Youn;Park, Myeong Soo;Ji, Geun Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1714-1723
    • /
    • 2012
  • ${\beta}$-Glucosidase is necessary for the bioconversion of glycosidic phytochemicals in food. Two Bifidobacterium strains (Bifidobacterium animalis subsp. lactis SH5 and B. animalis subsp. lactis RD68) with relatively high ${\beta}$-glucosidase activities were selected among 46 lactic acid bacteria. A ${\beta}$-glucosidase gene (bbg572) from B. lactis was shotgun cloned, fully sequenced, and analyzed for its transcription start site, structural gene, and deduced transcriptional terminator. The structural gene of bbg572 was 1,383 bp. Based on amino sequence similarities, bbg572 was assigned to family 1 of the glycosyl hydrolases. To overexpress bbg572 in Bifidobacterium, several bifidobacteria expression vectors were constructed by combining several promoters and a terminator sequence from different bifidobacteria. The maximum activity of recombinant Bbg572 was achieved when it was expressed under its own promoter and terminator. Its enzyme activity increased 31-fold compared with those of its parental strains. The optimal pH for Bbg572 was pH 6.0. Bbg572 was stable at $37-40^{\circ}C$. It hydrolyzed isoflavones, quercetins, and disaccharides with various ${\beta}$-glucoside linkages. Bbg572 also converted the ginsenosides Rb1 and Rb2. These results suggest that this new ${\beta}$-glucosidase-positive Bifidobacterium transformant can be utilized for the production of specific aglycone products.