References
- Aiba, H., A. Hanamura, and H. Yamano. 1991. Transcriptional terminator is a positive regulatory element in the expression of the Escherichia coli crp gene. J. Biol. Chem. 266: 1721-1727.
-
Bhatia, Y., S. Mishra, and V. S. Bisaria. 2002. Microbial
${\beta}$ - glucosidases: Cloning, properties and applications. Crit. Rev. Biotechnol. 22: 375-407. https://doi.org/10.1080/07388550290789568 - Brown, J. P. 1998. Hydrolysis of glycosides and esters. In: Role of the Gut Flora in Toxicity and Cancer. Academic Press, SanDiego.
- Chi, H. and G. E. Ji. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
- Choi, Y. O., J. M. Seo, and G. E. Ji. 2008. Modulatory activity of CpG oligonucleotides from Bifidobacterium longum on immune cells. Food Sci. Biotechnol. 17: 1131-1395.
- Collado-Vides, J., B. Magasanik, and J. D. Gralla. 1991. Control site location and transcriptional regulation in Escherichia coli. Microbiol. Rev. 55: 371-394.
-
Esen, A. 1993.
${\beta}$ -Glucosidase, pp. 1-13. In:${\beta}$ -Glucosidase: Biochemistry and Molecular Biology. American Chemical Society, Washington DC. - Estrem, S. T., T. Gaal, W. Ross, and R. L. Gourse. 1998. Identification of an UP element consensus sequence for bacterial promoters. Proc. Natl. Acad. Sci. USA 95: 9761-9766. https://doi.org/10.1073/pnas.95.17.9761
- Gekas, V. and M. H. Lopez-Levia. 1985. Hydrolysis of lactose. Process Biochem. 20: 2-12.
- Ghosh, P., N. B. Pamment, and W. R. B. Martin. 1982. Simultaneous saccharification and fermentation of cellulose: Effect of beta-D-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4: 425-430. https://doi.org/10.1016/0141-0229(82)90075-8
- Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Hawkswor, G., B. S. Drasar, and M. J. Hill. 1971. Intestinal bacteria and hydrolysis of glycosidic bonds. J. Med. Microbiol. 4: 451-459. https://doi.org/10.1099/00222615-4-4-451
- Helmann, J. D. 1995. Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: Evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res. 23: 2351-2360. https://doi.org/10.1093/nar/23.13.2351
- Hendrich, S. 2002. Bioavailability of isoflavones. J. Chromatogr. B 777: 203-210. https://doi.org/10.1016/S1570-0232(02)00347-1
- Jensen, P. R. and K. Hammer. 1998. The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol. 64: 82-87.
- Ji, G. E., S. K. Lee, and I. H. Kim. 1994. Improved selective medium for isolation and enumeration of Bifidobacterium sp. Korean J. Food Sci. Technol. 26: 526-531.
- Joint FAO/WHO Expert Consultation. 2001. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.
- Kawakami, Y., W. Tsurugasaki, S. Nakamura, and K. Osada. 2005. Comparison of regulative functions between dietary soy isoflavones aglycone and glucoside on lipid metabolism in rats fed cholesterol. J. Nutr. Biochem. 16: 205-212. https://doi.org/10.1016/j.jnutbio.2004.11.005
-
Kenji, S., T. Takashi, K. Hidehiko, and T. Tatsurokuro. 1986. Isolation and characterization of two
${\beta}$ -D-glucosidases from Bifidobacterium breve 203. Agric. Biol. Chem. 50: 2287-2293. https://doi.org/10.1271/bbb1961.50.2287 - Kim, J. Y., Y. Wang, M. S. Park, and G. E. Ji. 2010. Improvement of transformation efficiency through in vitro methylation and SacII site mutation of plasmid vector in Bifidobacterium longum MG1. J. Microbiol. Biotechnol. 20: 1022-1026. https://doi.org/10.4014/jmb.1003.03014
-
Kim, J. Y., Y. Wang, S. J. Park, M. S. Park, and G. E. Ji. 2012. Cloning of expression of
${\beta}$ -glucosidases from Bifidobacterium lactis AD011. Food Sci. Biotechnol. 21: 731-738. https://doi.org/10.1007/s10068-012-0095-0 -
Le, T. M. and N. T. Vu. 2010. Cloning of a
${\beta}$ -glucosidase gene (BGL1) from traditional starter yeast Saccharomycopsis fibuligera BMQ 908 and expression in Pichia pastoris. Int. J. Biol. Life Sci. 6: 83-87. - Lei, V., W. K. Amoa-Awua, and L. Brimer. 1999. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Int. J. Food Microbiol. 53: 169-184. https://doi.org/10.1016/S0168-1605(99)00156-7
- Mahlen, S. D. and J. E. Clarridge. 2009. Site and clinical significance of Alloscardovia omnicolens and Bifidobacterium species isolated in the clinical laboratory. J. Clin. Microbiol. 47: 3289-3293. https://doi.org/10.1128/JCM.00555-09
- Marotti, I., A. Bonetti, B. Biavati, P. Catizone, and G. Dinelli. 2007. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 55: 3913-3919. https://doi.org/10.1021/jf062997g
- McCracken, A., M. S. Turner, P. Giffard, L. M. Hafner, and P. Timms. 2000. Analysis of promoter sequences from Lactobacillus and Lactococcus and their activity in several Lactobacillus species. Arch. Microbiol. 173: 383-389. https://doi.org/10.1007/s002030000159
- Nunoura, N., K. Ohdan, K. Tanaka, H. Tamaki, T. Yano, M. Inui, et al. 1996. Cloning and nucleotide sequence of the beta-Dglucosidase gene from Bifidobacterium breve clb, and expression of beta-D-glucosidase activity in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 2011-2018. https://doi.org/10.1271/bbb.60.2011
- Nunoura, N., K. Ohdan, T. Yano, K. Yamamoto, and H. Kumagai. 1996. Purification and characterization of beta-Dglucosidase (beta-D-fucosidase) from Bifidobacterium breve clb acclimated to cellobiose. Biosci. Biotechnol. Biochem. 60: 188-193. https://doi.org/10.1271/bbb.60.188
-
Nunoura, N., K. Ohdan, K. Yamamoto, and H. Kumagai. 1997. Expression of the
${\beta}$ -d-glucosidase I gene in Bifidobacterium breve 203 during acclimation to cellobiose. J. Ferment. Bioeng. 83: 309-314. - Park, M. S., B. Kwon, J. J. Shim. C. S. Huh, and G. E. Ji. 2008. Heterologous expression of cholesterol oxidase in Bifidobacterium longum under the control of 16S rRNA gene promoter of bifidobacteria. Biotechnol. Lett. 30: 165-172.
- Park, M. S., J. M. Seo, and J. Y. Kim. 2005. Heterologous gene expression and secretion in Bifidobacterium longum. Lait 85: 1-8. https://doi.org/10.1051/lait:2004027
- Park, M. S., H. W. Moon, and G. E. Ji. 2003. Molecular characterization of plasmid from Bifidobacterium longum. J. Microbiol. Biotechnol. 13: 457-462.
- Sambrook, J., E. F. Frietsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Setchell, K. D. R., N. M. Brown, L. Zimmer-Nechemias, W. T. Brashear, B. E. Wolfe, A. S. Kirschner, and J. E. Heubi. 2002. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 76: 447-453.
- Sneath, P. H. A., N. S. Mair, M. E. Sharpe, and J. G. Holt. 1986. Bergey's Manual of Systematic Bacteriology. The Williams & Wilkins Co.
- Ventura, M., F. Turroni, A. Zomer, E. Foroni, V. Giubellini, F. Bottacini, et al. 2009. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet. 5: e1000785. https://doi.org/10.1371/journal.pgen.1000785
- Wang, Y., J. Y. Kim, M. S. Park, and G. E. Ji. 2012. Novel Bifidobacterium promoters selected through microarray analysis lead to constitutive high level expression. J. Microbiol. 50: 638-643. https://doi.org/10.1007/s12275-012-1591-x
- Xu, X., K. S. Harris, H. J. Wang, P. A. Murphy, and S. Hendrich. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J. Nutr. 125: 2307-2315.
Cited by
- Soy isoflavones and their relationship with microflora: beneficial effects on human health in equol producers vol.12, pp.4, 2012, https://doi.org/10.1007/s11101-013-9329-x
- High Expression of β-Glucosidase in Bifidobacterium bifidum BGN4 and Application in Conversion of Isoflavone Glucosides During Fermentation of Soy Milk vol.25, pp.4, 2012, https://doi.org/10.4014/jmb.1408.08013
- Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review vol.21, pp.5, 2016, https://doi.org/10.3390/molecules21050645
- Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007 vol.100, pp.1, 2012, https://doi.org/10.1016/j.foodres.2017.07.024
- Omics of bifidobacteria: research and insights into their health-promoting activities vol.474, pp.24, 2017, https://doi.org/10.1042/bcj20160756
- Comparative genomics and genotype-phenotype associations in Bifidobacterium breve vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-28919-4
- Enhancing Immunomodulatory Function of Red Ginseng Through Fermentation Using Bifidobacterium animalis Subsp. lactis LT 19-2 vol.11, pp.7, 2019, https://doi.org/10.3390/nu11071481
- Cloning and Heterologous Expression of the β-Galactosidase Gene from Bifidobacterium longum RD47 in B. bifidum BGN4 vol.29, pp.11, 2012, https://doi.org/10.4014/jmb.1905.05068
- In silico Approach to Elucidate Factors Associated with GH1 β-Glucosidase Thermostability vol.13, pp.4, 2012, https://doi.org/10.22207/jpam.13.4.07
- Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives vol.104, pp.9, 2012, https://doi.org/10.1007/s00253-020-10455-9
- Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific vol.8, pp.6, 2020, https://doi.org/10.3390/microorganisms8060839
- The Potential Role of Phytonutrients Flavonoids Influencing Gut Microbiota in the Prophylaxis and Treatment of Inflammatory Bowel Disease vol.8, pp.None, 2012, https://doi.org/10.3389/fnut.2021.798038
- Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study vol.13, pp.8, 2012, https://doi.org/10.3390/nu13082688
- Production of biologically active human interleukin-10 by Bifidobacterium bifidum BGN4 vol.20, pp.1, 2012, https://doi.org/10.1186/s12934-020-01505-y