DOI QR코드

DOI QR Code

Description of Nearly Completed Mitochondrial Genome Sequences of the Garden Chafer Polyphylla laticollis manchurica, Endangered in Korea (Insecta: Coleoptera)

  • Kim, Min Jee (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Ki-Gyoung (Biological Resources Research Department, National Institute of Biological Resources) ;
  • Kim, Iksoo (College of Agriculture & Life Sciences, Chonnam National University)
  • Published : 2013.09.30

Abstract

In this study, we present the nearly complete mitogenome sequences of the garden chafer, Polyphylla laticollis manchurica, which is listed as an endangered species in Korea. The P. l. manchurica mitogenome, which includes unfinished whole A+T-rich region and a partial srRNA was 14,473-bp long, possessing typical sets of genes (13 PCGs, 22 tRNA genes, and 2 rRNA genes). Gene arrangement of the P. l. manchurica mitogenome was identical to the common one found in the majority of insects. The 5 bp-long motif sequence (TAGTA) that has been suggested to be the possible binding site for the transcription termination peptide for the major-strand was also found in the P. l. manchurica mitogenome between $tRNA^{Ser}$(UCN) and ND1. The start codon for COI gene and ATPase8 was designated as a typical TTG. All tRNAs of the P. l. manchurica showed a stable canonical clover-leaf structure of other mt tRNAs, except for $tRNA^{Ser}$(AGN), DHU arm of which could not form stable stemloop structure. As has been previously determined, the high A/T content was unanimously observed in P. l. manchurica in terms of A/T bias in the third codon position (73.5%) compared with the first (66.4%) and second codon position (66.2%). The PCGs encoded in major-strands are slightly T-skewed, whereas those of the minor-strand are A-skewed, indicating strand asymmetry in nucleotide composition in the Coleoptera including P. l. manchurica.

Keywords

References

  1. Arnoldi FG, Ogoh K, Ohmiya Y and Viviani VR (2007) Mitochondrial genome sequence of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae): Mitochondrial genes utility to investigate the evolutionary history of Coleoptera and its bioluminescence. Gene 405, 1-9. https://doi.org/10.1016/j.gene.2007.07.035
  2. Bae JS, Kim I, Sohn HD, Jin BR (2004) The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Mol Phylogenet Evol 32, 978-985. https://doi.org/10.1016/j.ympev.2004.03.009
  3. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27, 1767-1780. https://doi.org/10.1093/nar/27.8.1767
  4. Burland TG (2000) DNASTAR's Lasergene sequence analysis software. Methods Mol Biol 132, 71-91.
  5. Cameron SL, Sullivan J, Song H, Miller KB, Whiting FW (2009) mitochondrial genome phylogeny of the Neuropterida (lacewings, alderflies and snakeflies) and their relationship to the other holometabolous insect orders. Zool Scr 38, 575-590. https://doi.org/10.1111/j.1463-6409.2009.00392.x
  6. Carapelli A, Vannini L, Bardi F, Boore JL, Beani L, Dallai R and Frati F (2006) The mitochondrial genome of the entomophagous endoparasite Xenos vesparum (Insecta: Strepsiptera). Gene 376, 248- 259. https://doi.org/10.1016/j.gene.2006.04.005
  7. Friedrich M, Muquim N (2003) Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. Mol Phylogenet Evol 26, 502-512. https://doi.org/10.1016/S1055-7903(02)00335-4
  8. Garey JR and Wolstenholme DR (1989) Platyhelminth mitochondrial DNA: evidence for early evolutionary origin of a tRNA $^{ser}(AGN)$ that contains a dihydrouridine arm replacement loop, and of serinespecifying AGA and AGG codons. J Mol Evol 28, 374-387. https://doi.org/10.1007/BF02603072
  9. Hammond PM (1992) Species inventory; in Global biodiversity, status of the earth's living resources . Grrombridge B (ed.), pp. 17-39. Chapman and Hall, London.
  10. Hong MY, Jeong HC, Kim MJ, Jeong HU, Lee SH, Kim I (2009) Complete mitogenome sequence of the jewel beetle, Chrysochroa fulgidissima (Coleoptera: Buprestidae). Mitochondrial DNA 20, 46-60. https://doi.org/10.1080/19401730802644978
  11. Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Hwang JS, Jin BR, Kang PD, Kim KG, Han YS and Kim I (2008) Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413, 49-57. https://doi.org/10.1016/j.gene.2008.01.019
  12. Jermiin L, Ho SY, Ababneh F, Robinson J, Larkum AW (2004) The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol 53, 638-43. https://doi.org/10.1080/10635150490468648
  13. Kim KG, Hong MY, Kim MJ, Im HH, Kim MI, Seo SJ, Lee SH and Kim I (2009) Complete mitochondrial genome sequence of the yellow-spotted long-horned beetle Psacothea hilaris (Coleoptera: Cerambycidae) and phylogenetic analysis among coleopteran insects. Mol Cells 27, 429-441. https://doi.org/10.1007/s10059-009-0064-5
  14. Kim I, Cha SY, Kim MA, Lee YS, Lee KS, Choi YS, Hwang JS, Jin BR, Han YS (2007) Polymorphism and genomic structure of the A?T-rich region of mitochondrial DNA in the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). Biochem Genet 45, 589-610. https://doi.org/10.1007/s10528-007-9099-5
  15. Kim MJ, Im HH, Lee KY, Han YS, Kim I (2013a) Complete mitochondrial genome of the whiter-spotted flower chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae). Mitochondrial DNA In press (DOI: 10.3109/19401736.2013.792064).
  16. Kim MJ, Kang AR, Jeong HC, Kim K-G, Kim I (2011) Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 61, 436-445. https://doi.org/10.1016/j.ympev.2011.07.013
  17. Kim MJ, Kim K-G, Kim SR, Kim I (2013b) Complete mitochondrial genome of the two-spotted stag beetle, Metopodontus blanchardi (Coleoptera: Lucanidae). Mitochondrial DNA In press (DOI: 10.3109/19401736.2013.825788).
  18. Kim MJ, Wan X, Kim I (2012) Complete mitochondrial genome of the seven-spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae) Mitochondrial DNA 23, 179-181. https://doi.org/10.3109/19401736.2012.668901
  19. Kim MJ, Wan X, Kim KG, Hwang JS, Kim I (2010) Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol 9, 735-54.
  20. Lewis DL, Farr CL, Farquhar AL, Kaguni LS (1994) Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol Biol Evol 11, 523-538.
  21. Li X, Ogoh K, Ohba N, Liang X, Ohmiya Y (2007) Mitochondrial genomes of two luminous beetles, Rhagophthalmus lufengensis and R. ohbai (Arthropoda, Insecta, Coleoptera). Gene 392, 196-205. https://doi.org/10.1016/j.gene.2006.12.017
  22. Lowe TM, Eddy SR (1997) tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  23. Mitchell SE, Cockburn AF and Seawright JA (1990) The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome 36, 1058-1073.
  24. Ohtsuki T, Sato A, Watanabe Y and Watanabe K (2002) A unique serinespecific elongation factor Tu found in nematode mitochondria. Nat Struct Biol 9, 669-673. https://doi.org/10.1038/nsb826
  25. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290, 470-474. https://doi.org/10.1038/290470a0
  26. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at four fold degenerate sites of animal mitochondrial genomes. J Mol Evol 41, 353-358. https://doi.org/10.1007/BF01215182
  27. Pons J, Ribera I, Bertranpetit J, Balke M (2010) Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol Phylogenet Evol 56, 796-807. https://doi.org/10.1016/j.ympev.2010.02.007
  28. Reyes A, Gissi C, Pesole G and Saccone C (1998) Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 15, 957-966. https://doi.org/10.1093/oxfordjournals.molbev.a026011
  29. Sheffield NC, Song H, Cameron SL, Whiting MF (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Mol Biol Evol 25, 2499-2509. https://doi.org/10.1093/molbev/msn198
  30. Sheffield NC, Song H, Cameron SL, Whiting MF (2009) Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics. Syst Biol 58, 381-394. https://doi.org/10.1093/sysbio/syp037
  31. Song H, Sheffield NC, Cameron SL, Miller KB and Whiting MF (2010) When phylogenetic assumptions are violated: base compositional heterogeneity and among-site rate variation in beetle mitochondrial phylogenomics. Syst Entomol 35, 429-448. https://doi.org/10.1111/j.1365-3113.2009.00517.x
  32. Stewart JB, Beckenbach AT (2003) Phylogenetic and genomic analysis of the complete mitochondrial DNA sequence of the spotted asparagus beetle Crioceris duodecimpunctata . Mol Phylogenet Evol 26, 513-526. https://doi.org/10.1016/S1055-7903(02)00421-9
  33. Taanman JW (1999). The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta1410, 103- 123. https://doi.org/10.1016/S0005-2728(98)00161-3
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24, 173-216.
  35. Wan X, Kim MI, Kim MJ, Kim I (2012) Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae) and phylogeny of Polyneoptera. PLoS ONE 7, e42056. https://doi.org/10.1371/journal.pone.0042056
  36. Wang AR, Kim MJ, Park JS, Choi YS, Thapa R, Lee KY, Kim I (2013) Complete mitochondrial genome of the dwarf honeybee, Apis florea (Hymenoptera: Apidae). Mitochondrial DNA 24, 208-210. https://doi.org/10.3109/19401736.2012.744986
  37. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution; in International Review of Cytology Wolstenholme DR, Jeon KW (eds.) pp. 173-216. Academic Press, New York.
  38. Won, BH, Kwon YJ, Kim, SS, Kim, W, et al . (1998) Endangered wild species in Korea. Seoul, Korea: Kyo-Hak Publishing Co.
  39. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: A review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Evol 25, 99-120. https://doi.org/10.1016/S0305-1978(96)00042-7
  40. Zhou Z, Huang Y, Shi F (2007) The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome 50, 855-866. https://doi.org/10.1139/G07-057

Cited by

  1. Revisiting Coleoptera a + T-rich region: structural conservation, phylogenetic and phylogeographic approaches in mitochondrial control region of bioluminescent Elateridae species (Coleoptera) vol.28, pp.5, 2017, https://doi.org/10.3109/24701394.2016.1174220
  2. The Mitochondrial Genomes of 18 New Pleurosticti (Coleoptera: Scarabaeidae) Exhibit a Novel trnQ-NCR-trnI-trnM Gene Rearrangement and Clarify Phylogenetic Relationships of Subfamilies within Scarabaei vol.12, pp.11, 2021, https://doi.org/10.3390/insects12111025
  3. Phylogenetic analysis of Melolontha and Polyphylla beetles (Scarabaeidae: Coleoptera) from north-western Himalaya, India vol.50, pp.1, 2013, https://doi.org/10.1007/s12600-021-00945-5