• Title/Summary/Keyword: Train vibration

Search Result 779, Processing Time 0.024 seconds

Vibration Velocity Response of Buried Gas Pipelines according to Train Speed (지중 매설 가스 배관의 열차 주행 속도에 따른 진동 속도 특성)

  • Kim, Mi-Seung;Sun, Jin-Sun;Kim, Gun;Kim, Moon-Kyum
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.561-566
    • /
    • 2008
  • Recently, because of development of the high speed train technology, the vibration loads by train is significantly increased ever than before. This buried gas pipelines are exposed to both repeated impact loads, and, moreover, they have been influencing by vibration loads than pipeline which is not located under vehicle loads. The vibration characteristic of pipeline is examined by dynamic analysis, and variable is only train speed. Since an effect of magnitude of vibration loads is more critical than cover depth, as increasing the train speed, the vibration speed of buried pipelines is also increased. The slope of vibration velocity is changed by attenuation of wave, at train speed, 300 km/h. From the analysis results, the vibration velocity of pipelines is satisfied with the vibration velocity criteria which are established by Korea Gas Corporation. The results present operation condition of pipelines under rail loads has fully sound integrity based on KOGAS specification.

  • PDF

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Safety Diagnosis of Electric Train Driving System Using Vibration Signal (진동신호를 이용한 전기동차 구동장치의 안전성 평가)

  • 이봉현;최연선
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.929-935
    • /
    • 1998
  • Safety diagnosis of electric train driving system is performed using vibration signals of running electric train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and bogie. The appreciation of superannuation is checked by the vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals which are measured directly from a running electric train. The results shows that the vibration levels of each parts increase as the train gets older and each parts have their own frequency patterns of the vibration. Vibration propagation path is also investigated using calculated the coherence value between bogie and driving system. As the results, it is known that vibration signal can be utilized successfully for the safety diagnosis of the driving part of electric train.

  • PDF

A Study on the Characteristics of Transferring Vibration and Effect of Nearby-Building Induced by the High-speed Train in Operation (고속철도 운행에 의한 진동전달특성 및 인접건물에 미치는 영향에 관한 연구)

  • 배동명;신창혁;최철은;박상곤;백용진
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.354-364
    • /
    • 2001
  • The vibration induced by high speed train running on rail is dealt with as an environmental problem. The train induced vibration is characterized by moving loads at specific frequencies and soil conditions. In fact, it is predicted that the vibration sources are involved the wheel distance, number of cars, speed of operation, drift of rails, structural born vibration, etc. In this paper the characteristics of transferring vibration induced by the high-speed train in operation is discussed. Field measurements was conducted at region from Chungnam Yungj So-jung-myan to Chungbuk Chungwon hyun-do-myun. In the near future. these data will be used as the fundamental data for establishment of the countermeasure for vibrational reduction of high speed train using the results of the field measurements and quantitative prediction of the vibration level

  • PDF

Vibration and Noise Measurement on the Driving System of Electric Train for Safety Diagnosis (전기동차 구동장치의 안전진단을 위한 진동.소음 측정)

  • 최연선;이봉현;최경긴;유원희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.210-215
    • /
    • 1997
  • Safety diagnosis on the driving system of electric train is performed using the vibration and noise signals of running railway train. Safety diagnosis is tried on the viewpoints of the appreciation of superannuation and the fault diagnosis of motor, reduction gear and boggie. The appreciation of superannuation is checked by the rms vibration levels of driving parts and the fault diagnosis is done by analyzing the frequencies of the vibration signals. The methods of measuring and analyzing the signals are decided on the basis of field 1-measured signals. The results shows that the vibration levels of each parts increase as the train goes older and each parts have their own frequency patterns of the vibration. As the results, the vibration and noise can be utilized successfully for the safety diagnosis of the driving part of electric train.

  • PDF

Development of Empirical Equations for Estimating the Train-Induced Ground Vibration (철도연변 지반 진동 Data Base 구축을 통한 지반진동예측 실험식)

  • 황선근;고태훈;엄기영;오상덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1022-1027
    • /
    • 2001
  • In this study, the train-induced vibration was measured at many locations at/around the actual service lines and the data base was constructed using the measurement results. The characteristics of train induced ground vibration was categorized and the empirical ground vibration estimating equations were developed. On the ground area (level grounds, embankments, cut sections), the vibration estimating equations were developed in terms of ground vibration level which was related with the distance from the source. Especially for the cut section areas, the vibration levels were expressed with the vibration receiving point expressed by the ratio of vertical distance to horizontal distance(V/H) from the source. As a result, when V/H is 0.96, the vibration estimating equation gives a minimum vibration level.

  • PDF

Ground Vibration Analysis Methods for Train Transit on Bridges (교량구간에서의 열차하중에 의한 지반진동 해석법)

  • 윤정방;이종재;김두기;심종민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.357-364
    • /
    • 1998
  • In this paper, ground vibration analysis methods for train transit on bridges are studied. Train loads acting on the piers are evaluated considering the interactions between the trains and the bridge. The 2D in-plane wave propagation method and the axisymmetric wave propagation method are used in the ground vibration analysis, and then the results of the ground vibration are compared. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves.

  • PDF

Low Back Pain and Related Factors in Railroad Engineers (일부 철도기관사의 요통경험 및 관련요인)

  • Yi Seung-Ju;Kwon Jin-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.398-411
    • /
    • 2002
  • Objectives: The purpose of present study was to investigate the experience and point prevalence rate and factors related with Low Back Pain (LBP) in train egineers. Methods: Questionnaires were completed by 324 train engineers in Daejeon railroad administration from May 2002. The information was used to estimate odds ratio (OR) and 95$\%$ confidence intervals (CI) for factors relation to LBP. A retrospective study design was used. Results: The experience rate for LBP was 67.9$\%$, 54$\%$ in one year interval prevalence, 53.4$\%$ in 6 months interval prevalence, and 47.8$\%$ in a point prevalence rate. Variables significantly associated with LBP experience were age (p=0.0327), train vibration(p=0.0015), labour hour(p=0.0034), and pay(p=0.0534). As subjects got older, the higher experience for LBP was (OR=1.1, 95$\%$ CI 1.0-1.2). LBP experience rate for people who had felt train vibration was a higher than those who did not (OR=2.5, 95$\%$ CI 1.4-4.4, OR=2.3 95$\%$ CI 1.3-4.0 in a point prevalence). The people who worked for long hour was a higher than those who did not (OR=2.8, 95$\%$ CI 1.4-5.6, OR=2.2, 95$\%$ CI 1.1-4.5 in a point prevalence). The people who were not satisfied with pay was a higher than those who were (OR=1.7, 95$\%$ CI 1.0-3.0). Factors related to a point prevalence rate were train vibration(p=0.0027), chair vibration (p=0.0444), and labour hour(p=0.0340). LBP a point prevalence rate for people who had felt the vibration of train chair was a higher than those who did not (OR=1.8 95$\%$ CI 0.7-2.0). Conclusions: Results from present study indicated that a statistically significant factors associated with LBP experience were age, train vibration, labour hour, and pay, Factors related to a point prevalence rate were also train vibration, the vibration of train chair, and labour hour.

  • PDF

Vibration Analysis and Mitigable Countermeasures of Semi High-speed Subway Electric Trains (준고속 도시철도의 진동분석 및 저감대책)

  • Park, Ki-Soo;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1014-1023
    • /
    • 2008
  • Subway electric trains need to be faster for accommodation of long distance passengers. The faster run of the existing trains results in deterioration of ride quality due to noise and vibration. To reduce the noise and vibration of the electric train, a running test of the electric train was performed and an ADAMS/Rail model was set up to verify the running test results. The experimental results show that the sources of the cabin noise and vibration basically comes from the irregularity of the railroad track and the deterioration of the connection part between cabin and bogie. Consequently for mitigation of noise and vibration of the electric train, the redesign of the center pivot with softer stiffness and the minimization of rail irregularity are necessary. the frequent maintenance of the train will lead to better comport.

Characteristic analysis on train-induced vibration responses of rigid-frame RC viaducts

  • Sun, Liangming;He, Xingwen;Hayashikawa, Toshiro;Xie, Weiping
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1015-1035
    • /
    • 2015
  • A three-dimensional (3D) numerical analysis for the train-bridge interaction (TBI) system is actively developed in this study in order to investigate the vibration characteristics of rigid-frame reinforced concrete (RC) viaducts in both vertical and lateral directions respectively induced by running high-speed trains. An analytical model of the TBI system is established, in which the high-speed train is described by multi-DOFs vibration system and the rigid-frame RC viaduct is modeled with 3D beam elements. The simulated track irregularities are taken as system excitations. The numerical analytical algorithm is established based on the coupled vibration equations of the TBI system and verified through the detailed comparative study between the computation and testing. The vibration responses of the viaducts such as accelerations, displacements, reaction forces of pier bottoms as well as their amplitudes with train speeds are calculated in detail for both vertical and lateral directions, respectively. The frequency characteristics are further clarified through Fourier spectral analysis and 1/3 octave band spectral analysis. This study is intended to provide not only a simulation approach and evaluation tool for the train-induced vibrations upon the rigid-frame RC viaducts, but also instructive information on the vibration mitigation of the high-speed railway.