• Title/Summary/Keyword: Traffic state

Search Result 795, Processing Time 0.023 seconds

Modeling on Daily Traffic Volume of Local State Road Using Circular Mixture Distributions (혼합원형분포를 이용한 지방국도의 시간교통량 추정모형)

  • Na, Jong-Hwa;Jang, Young-Mi
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.547-557
    • /
    • 2011
  • In this paper we developed a statistical model for traffic volume data which collected from a spot of specific local state road. One peculiar property of daily traffic data is that it has bimodal shape which have two peaks on times of both going to office and coming back to home. So, various mixture models of circular distribution are suggested for bimodal traffic data and EM algorithms are applied to estimate the parameters of the suggested models. To compare the accuracy of the suggested models, classical regressions with dummy variables are also considered. The suggested models for traffic volumn data can be effectively used to estimate missing values due to measuring instrument disorder.

A Real Time Traffic Flow Model Based on Deep Learning

  • Zhang, Shuai;Pei, Cai Y.;Liu, Wen Y.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2473-2489
    • /
    • 2022
  • Urban development has brought about the increasing saturation of urban traffic demand, and traffic congestion has become the primary problem in transportation. Roads are in a state of waiting in line or even congestion, which seriously affects people's enthusiasm and efficiency of travel. This paper mainly studies the discrete domain path planning method based on the flow data. Taking the traffic flow data based on the highway network structure as the research object, this paper uses the deep learning theory technology to complete the path weight determination process, optimizes the path planning algorithm, realizes the vehicle path planning application for the expressway, and carries on the deployment operation in the highway company. The path topology is constructed to transform the actual road information into abstract space that the machine can understand. An appropriate data structure is used for storage, and a path topology based on the modeling background of expressway is constructed to realize the mutual mapping between the two. Experiments show that the proposed method can further reduce the interpolation error, and the interpolation error in the case of random missing is smaller than that in the other two missing modes. In order to improve the real-time performance of vehicle path planning, the association features are selected, the path weights are calculated comprehensively, and the traditional path planning algorithm structure is optimized. It is of great significance for the sustainable development of cities.

Classification of Traffic Information Announcement Considering Cognitive Characteristics for Traffic Situations (교통상황별 인지특성을 고려한 교통정보 방송멘트의 분류에 관한 연구)

  • Hwang, Seong-Min;Lee, Byung-Joo;Suh, Seung-Hwan;Sung, Soo-Lyeon;NamGung, Moon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.1-11
    • /
    • 2010
  • Traffic broadcasting is using a usual traffic information announcement when giving its information to users on the road and for the provision of information useful to drivers, a clear criteria of how to judge with information from informers needs to be established from the perspective of users. In this study, to give some available criteria for current announcement which often causes confusion, cognitive characteristics were investigated and analyzed based on judgment criteria which are commonly felt by correspondents, participants in traffic broadcasting and drivers. The result requires the provision of information that is relied on an average speed where drivers feel little cognitive difference and found a classification where a smooth traffic flow is more than 60km/h, going slow 40~60km/h and congested state less than 40km/h respectively. And from the study of 35 traffic information announcement for different traffic situations, 8 cases of smooth state and 9 cases of congested state were clearly classified but the rest 18 cases of comment were ambiguously perceived by drivers and which requires the necessity of a announcement that uses directly the word of 'smooth', 'slow', and 'congestion' in the actual expression of slow driving. The future study should be focused on the establishment of more definite criteria by representation of nearly real traffic flow, provision of traffic information announcement and the analysis of cognitive response through car dynamic simulators and the kinds.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

Study on the Functional Classification of IM Application Traffic using Automata (오토마타를 이용한 메신저 트래픽의 기능별 분류에 관한 연구)

  • Lee, Sang-Woo;Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.921-928
    • /
    • 2011
  • The increase of Internet users and services has caused the upsurge of data traffic over the network. Nowadays, variety of Internet applications has emerged which generates complicated and diverse data traffic. For the efficient management of Internet traffic, many traffic classification methods have been proposed. But most of the methods focused on the application-level classification, not the function-level classification or state changes of applications. The functional classification of application traffic makes possible the in-detail understanding of application behavior as well as the fine-grained control of applications traffic. In this paper we proposed automata based functional classification method of IM application traffic. We verified the feasibility of the proposed method with function-level control experiment of IM application traffic.

PGA: An Efficient Adaptive Traffic Signal Timing Optimization Scheme Using Actor-Critic Reinforcement Learning Algorithm

  • Shen, Si;Shen, Guojiang;Shen, Yang;Liu, Duanyang;Yang, Xi;Kong, Xiangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4268-4289
    • /
    • 2020
  • Advanced traffic signal timing method plays very important role in reducing road congestion and air pollution. Reinforcement learning is considered as superior approach to build traffic light timing scheme by many recent studies. It fulfills real adaptive control by the means of taking real-time traffic information as state, and adjusting traffic light scheme as action. However, existing works behave inefficient in complex intersections and they are lack of feasibility because most of them adopt traffic light scheme whose phase sequence is flexible. To address these issues, a novel adaptive traffic signal timing scheme is proposed. It's based on actor-critic reinforcement learning algorithm, and advanced techniques proximal policy optimization and generalized advantage estimation are integrated. In particular, a new kind of reward function and a simplified form of state representation are carefully defined, and they facilitate to improve the learning efficiency and reduce the computational complexity, respectively. Meanwhile, a fixed phase sequence signal scheme is derived, and constraint on the variations of successive phase durations is introduced, which enhances its feasibility and robustness in field applications. The proposed scheme is verified through field-data-based experiments in both medium and high traffic density scenarios. Simulation results exhibit remarkable improvement in traffic performance as well as the learning efficiency comparing with the existing reinforcement learning-based methods such as 3DQN and DDQN.

Effect of Driver's Cognitive Distraction on Driver's Physiological State and Driving Performance

  • Kim, Jun-Hoe;Lee, Woon-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.371-377
    • /
    • 2012
  • Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.

A Study on Local Standard Complement Between the LED Signal Head and Traffic Controller for Improving Signal Safety (신호의 안전성 향상을 위한 교통신호기와 LED신호등의 연계 특성 개선 방안 연구)

  • Le, Choul-Ki;Lee, Jeong-Jun;Oh, Bong-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • The off-state impedance of LED signal head is greater than that of a traditional bulb signal head, and the traffic controller has inherent off-state output leakage current. These two characteristics make the field trouble and reduce signal safety when the LED signal head is installed with traffic controller. In this Paper, a complement method of the LED signal head and traffic controller local standard (220vac line voltage) for improving signal safety is suggested. The point of designed complement method is to reduce the output leakage current of the traffic controller under 3mA, to increase the voltage feedback threshold to $70{\pm}5V$, and to make LED signal head maintain off-state in 0-95vac with 10Kohm maximum impedance.

  • PDF

Performance Analysis of an Adaptive Link Status Update Scheme Based on Link-Usage Statistics for QoS Routing

  • Yang, Mi-Jeong;Kim, Tae-Il;Jung, Hae-Won;Jung, Myoung-Hee;Choi, Seung-Hyuk;Chung, Min-Young;Park, Jae-Hyung
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.815-818
    • /
    • 2006
  • In the global Internet, a constraint-based routing algorithm performs the function of selecting a routing path while satisfying some given constraints rather than selecting the shortest path based on physical topology. It is necessary for constraint-based routing to disseminate and update link state information. The triggering policy of link state updates significantly affects the volume of update traffic and the quality of services (QoS). In this letter, we propose an adaptive triggering policy based on link-usage statistics in order to reduce the volume of link state update traffic without deterioration of QoS. Also, we evaluate the performance of the proposed policy via simulations.

  • PDF

A New Policing Method for Markovian Traffic Descriptors of VBR MPEG Video Sources over ATM Networks (ATM 망에서의 마코프 모델기반 VBR MPEG 비디오 트래픽 기술자에 대한 새로운 Policing 방법)

  • 유상조;홍성훈;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.142-155
    • /
    • 2000
  • In this paper, we propose an efficient policing mechanism for Markov model-based traffic descriptors of VBR MPEG video traffic. A VBR video sequence is described by a set of traffic descriptors using a scene-basedMarkov model to the network for the effective resource allocation and accurate QoS prediction. The networkmonitors the input traffic from the source using a proposed new policing method. for policing the steady statetransition probability of scene states, we define two representative monitoring parameters (mean holding andrecurrence time) for each state. For frame level cell rate policing of each scene state, accumulated average cellrates for the frame types are compared with the model parameters. We propose an exponential bounding functionto accommodate dynanic behaviors during the transient period. Our simulation results show that the proposedpolicing mechanism for Markovian traffic descriptors monitors the sophisticated traffic such as MPEG videoeffectively and well protects network resources from the nalicious or misbehaved traffic.

  • PDF