DOI QR코드

DOI QR Code

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment

Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발

  • Tak, Se-hyun (Korea Advanced Institute of Science and Technology) ;
  • Yeo, Hwasoo (Korea Advanced Institute of Science and Technology)
  • 탁세현 (한국과학기술원 건설 및 환경공학과) ;
  • 여화수 (한국과학기술원 건설 및 환경공학과)
  • Received : 2016.05.27
  • Accepted : 2016.07.12
  • Published : 2016.08.31

Abstract

This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

자율주행 차량은 다양한 센서를 활용하여 사람과 유사한 수준으로 실시간 도로환경 변화를 인지, 환경 변화에 대한 적절한 판단 및 제어를 수행하여야 한다. 특히 영상센서는 차선인식 기능을 통해 주행방향 결정 및 차로이탈 방지 등 조향제어 수행을 위한 인지에 활용된다. 하지만 관련 성능기준은 ADAS(Advanced Driver Assistance System)와 연계된 '운전자 보조' 역할에 초점이 맞춰져, 자율주행시 요구되는 '주체적 상황 인지'를 위한 성능조건과 다를 것으로 판단된다. 본 연구에서는 자율주행시 차선인식 기능이 정상적으로 작동되지 않는 상황이 지속될 때 차량 진행방향과 도로 선형방향의 불일치에 따라 발생되는 횡방향 차로이탈을 차량의 이동 궤적을 기반하여 추정하고, 안전성 확보를 위한 차로이탈 허용 수준 및 영상센서 성능수준을 제시하였다. 분석 결과 승용차 조건에서 차선인식 기능이 1초 이상 연속적인 오작동을 일으킨다면 차로이탈에 의한 위험한 상황에 놓일 수 있는 것으로 나타났다. 따라서 자율주행 차량을 위한 차선인식 기능 평가 시 현재 기준보다 큰 횡방향 차로이탈상황에 대한 검토가 필요할 것으로 판단된다.

Keywords

References

  1. Hou Z., Xu J. X. and Zhong H.(2007), "Freeway traffic control using iterative learning controlbased ramp metering and speed signaling," Vehicular Technology, IEEE Transactions on, vol. 56, no. 2, pp.466-477. https://doi.org/10.1109/TVT.2007.891431
  2. Hegyi A., De Schutter B. and Hellendoorn H.(2005), "Model predictive control for optimal coordination of ramp metering and variable speed limits," Transportation Research Part C : Emerging Technologies, vol. 13, no. 3, pp.185-209. https://doi.org/10.1016/j.trc.2004.08.001
  3. Papageorgiou M., Hadj-Salem H. and Blosseville J. M.(1991), "ALINEA : A local feedback control law for on-ramp metering," Transportation Research Record, (1320).
  4. Kotsialos A. and Papageorgiou, M.(2001), "Efficiency versus fairness in network-wide ramp metering," In Intelligent Transportation Systems, 2001, Proceedings, 2001 IEEE, pp. 1189-1194.
  5. Dahal K., Almejalli K. and Hossain M. A. (2013), "Decision support for coordinated road traffic control actions," Decision Support Systems, vol. 54, no. 2, pp.962-975. https://doi.org/10.1016/j.dss.2012.10.022
  6. Clark S.(2003), "Traffic prediction using multivariate nonparametric regression," Journal of transportation engineering, vol. 129, no. 2, pp.161-168. https://doi.org/10.1061/(ASCE)0733-947X(2003)129:2(161)
  7. Davis G. A. and Nihan N. L.(1991), "Nonparametric regression and short-term freeway traffic forecasting," Journal of Transportation Engineering, vol. 117, no. 2, pp.178-188. https://doi.org/10.1061/(ASCE)0733-947X(1991)117:2(178)
  8. Smith B. L., Williams B. M. and Oswald R. K.(2002), "Comparison of parametric and nonparametric models for traffic flow forecasting," Transportation Research Part C : Emerging Technologies, vol. 10, no. 4, pp.303-321. https://doi.org/10.1016/S0968-090X(02)00009-8
  9. Daganzo C. F.(1994), "The cell transmission model : A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B : Methodological, vol. 28, no. 4, pp.269-287. https://doi.org/10.1016/0191-2615(94)90002-7
  10. Daganzo C. F.(1995), "The cell transmission model, part II : network traffic," Transportation Research Part B : Methodological, vol. 29, no. 2, pp.79-93. https://doi.org/10.1016/0191-2615(94)00022-R
  11. Gomes G. and Horowitz R.(2006), "Optimal freeway ramp metering using the asymmetric cell transmission model," Transportation Research Part C : Emerging Technologies, vol. 14, no. 4, pp.244-262. https://doi.org/10.1016/j.trc.2006.08.001
  12. Lo H. K.(2001), "A cell-based traffic control formulation : strategies and benefits of dynamic timing plans," Transportation Science, vol. 35, no. 2, pp.148-164. https://doi.org/10.1287/trsc.35.2.148.10136
  13. Teklu F., Sumalee A. and Watling D.(2007), "A genetic algorithm approach for optimizing traffic control signals considering routing," Computer Aided Civil and Infrastructure Engineering, vol. 22, no. 1, pp.31-43. https://doi.org/10.1111/j.1467-8667.2006.00468.x
  14. Ceylan H.(2006), "Developing combined genetic algorithm-hill-climbing optimization method for area traffic control," Journal of Transportation Engineering, vol. 132, no. 8, pp.663-671. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:8(663)
  15. Tak S., Kim S., Jang K. and Yeo H.(2014), "Real-time travel time prediction using multi -level k-nearest neighbor algorithm and data fusion method," Computing in civil and building engineering, pp.1861-1868.
  16. Park J.(2015), "A study on toll cost policy for optimizing travel time of multi-routed highway section," Korea Advanced Institute of Science and Technology(KAIST), Master's Thesis.