• Title/Summary/Keyword: Traffic processing time

Search Result 557, Processing Time 0.023 seconds

A Study of Measuring Traffic Congestion for Urban Network using Average Link Travel Time based on DTG Big Data (DTG 빅데이터 기반의 링크 평균통행시간을 이용한 도심네트워크 혼잡분석 방안 연구)

  • Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.5
    • /
    • pp.72-84
    • /
    • 2017
  • Together with the Big Data of the 4th Industrial Revolution, the traffic information system has been changed to an section detection system by the point detection system. With DTG(Digital Tachograph) data based on Global Navigation Satellite System, the properties of raw data and data according to processing step were examined. We identified the vehicle trajectory, the link travel time of individual vehicle, and the link average travel time which are generated according to the processing step. In this paper, we proposed a application method for traffic management as characteristics of processing data. We selected the historical data considering the data management status of the center and the availability at the present time. We proposed a method to generate the Travel Time Index with historical link average travel time which can be collected all the time with wide range. We propose a method to monitor the traffic congestion using the Travel Time Index, and analyze the case of intersections when the traffic operation method changed. At the same time, the current situation which makes it difficult to fully utilize DTG data are suggested as limitations.

Simulation of Traffic Signal Control with Adaptive Priority Order through Object Extraction in Images (영상에서 객체 추출을 통한 적응형 통행 우선순위 교통신호 제어 시뮬레이션)

  • Youn, Jae-Hong;Ji, Yoo-Kang
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1051-1058
    • /
    • 2008
  • The advancement of technology for image processing and communications makes it possible for current traffic signal controllers and vehicle detection technology to make both emergency vehicle preemption and transit priority strategies as a part of integrated system. Present]y traffic signal control in crosswalk is controlled by fixed signals. The signal control keeps regular signals traffic even with no traffic, when there is traffic, should wait until the signal is given. Waiting time causes the risk of traffic accidents and traffic congestion in accordance with signal violation. To help reduce the risk of accidents and congestion, this paper explains traffic signal control system for the adaptive priority order so that signal may be preferentially given in accordance with the situation of site through the object detect images.

  • PDF

Traffic flow measurement system using image processing

  • Hara, Takaaki;Akizuki, Kageo;Kawamura, Mamoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.426-439
    • /
    • 1996
  • In this paper, we propose a simple algorithm to calculate the numbers of the passing cars by using an image processing sensor for the digital black and white images with 256 tone level. Shadow is one of the most troublesome factor in image processing. By differencing the tone level, we cannot discriminate between the body of the car and its shadow. In our proposed algorithm, the area of the shadow is excluded by recognizing the position of each traffic lane. For real-time operation and simple calculation, two lines of the tone level are extracted and the existences of cars are recognized. In the experimental application on a high-way, the recognition rate of the real-time operation is more than 94%.

  • PDF

A Video Traffic Flow Detection System Based on Machine Vision

  • Wang, Xin-Xin;Zhao, Xiao-Ming;Shen, Yu
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1218-1230
    • /
    • 2019
  • This study proposes a novel video traffic flow detection method based on machine vision technology. The three-frame difference method, which is one kind of a motion evaluation method, is used to establish initial background image, and then a statistical scoring strategy is chosen to update background image in real time. Finally, the background difference method is used for detecting the moving objects. Meanwhile, a simple but effective shadow elimination method is introduced to improve the accuracy of the detection for moving objects. Furthermore, the study also proposes a vehicle matching and tracking strategy by combining characteristics, such as vehicle's location information, color information and fractal dimension information. Experimental results show that this detection method could quickly and effectively detect various traffic flow parameters, laying a solid foundation for enhancing the degree of automation for traffic management.

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.

Road Traffic Control Gesture Recognition using Depth Images

  • Le, Quoc Khanh;Pham, Chinh Huu;Le, Thanh Ha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This paper presents a system used to automatically recognize the road traffic control gestures of police officers. In this approach,the control gestures of traffic police officers are captured in the form of depth images.A human skeleton is then constructed using a kinematic model. The feature vector describing a traffic control gesture is built from the relative angles found amongst the joints of the constructed human skeleton. We utilize Support Vector Machines (SVMs) to perform the gesture recognition. Experiments show that our proposed method is robust and efficient and is suitable for real-time application. We also present a testbed system based on the SVMs trained data for real-time traffic gesture recognition.

  • PDF

Development of a Real Time Video Image Processing System for Vehicle Tracking (실시간 영상처리를 이용한 개별차량 추적시스템 개발)

  • Oh, Ju-Taek;Min, Joon-Young
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.19-31
    • /
    • 2008
  • Video image processing systems(VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on wide-area detection, i.e., multi-lane surveillance algorithm provide traffic parameters with single camera such as flow and velocity, as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. The objective of this research was to relate traffic safety to VIPS tracking and this paper has developed a computer vision system of monitoring individual vehicle trajectories based on image processing, and offer the detailed information, for example, volumes, speed, and occupancy rate as well as traffic information via tripwire image detectors. Also the developed system has been verified by comparing with commercial VIP detectors.

  • PDF

Advanced Freeway Traffic Safety Warning Information System based on Surrogate Safety Measures (SSM): Information Processing Methods (Surrogate Safety Measures(SSM)기반 고속도로 교통안전 경고정보 처리 및 가공기법)

  • O, Cheol;O, Ju-Taek;Song, Tae-Jin;Park, Jae-Hong;Kim, Tae-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.59-70
    • /
    • 2009
  • This study presents a novel traffic information system which is capable of detecting unsafe traffic events leading to accident occurrence and providing warning information to drivers for safer driving. Unsafe traffic events are captured by a vehicle image processing-based detection system in real time. Surrogate safety measures (SSM) representing quantitative accident potentials were derived, and further utilized to develop a data processing algorithm and analysis techniques in the proposed system. This study also defined 'emergency warning area' and 'general warning area' for more effective provision of warning information. In addition, methodologies for determining thresholds to trigger warning information were presented. Technical issues and further studies to fully exploit the benefits of the proposed system were discussed. It is expected that the proposed system would be effective for better management of traffic flow to prevent traffic accidents on freeways.

A New Class-Based Traffic Queue Management Algorithm in the Internet

  • Zhu, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.575-596
    • /
    • 2009
  • Facing limited network resources such as bandwidth and processing capability, the Internet will have congestion from time to time. In this paper, we propose a scheme to maximize the total utility offered by the network to the end user during congested times. We believe the only way to achieve our goal is to make the scheme application-aware, that is, to take advantage of the characteristics of the application. To make our scheme scalable, it is designed to be class-based. Traffic from applications with similar characteristics is classified into the same class. We adopted the RED queue management mechanism to adaptively control the traffic belonging to the same class. To achieve the optimal utility, the traffic belonging to different classes should be controlled differently. By adjusting link bandwidth assignments of different classes, the scheme can achieve the goal and adapt to the changes of dynamical incoming traffic. We use the control theoretical approach to analyze our scheme. In this paper, we focus on optimizing the control on two types of traffic flows: TCP and Simple UDP (SUDP, modeling audio or video applications based on UDP). We derive the differential equations to model the dynamics of SUDP traffic flows and drive stability conditions for the system with both SUDP and TCP traffic flows. In our study, we also find analytical results on the TCP traffic stable point are not accurate, so we derived new formulas on the TCP traffic stable point. We verified the proposed scheme with extensive NS2 simulations.

Design and Implementation of Advanced Traffic Monitoring System based on Integration of Data Stream Management System and Spatial DBMS

  • Xia, Ying;Gan, Hongmei;Kim, Gyoung-Bae
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • The real-time traffic data is generated continuous and unbounded stream data type while intelligent transport system (ITS) needs to provide various and high quality services by combining with spatial information. Traditional database techniques in ITS has shortage for processing dynamic real-time stream data and static spatial data simultaneously. In this paper, we design and implement an advanced traffic monitoring system (ATMS) with the integration of existed data stream management system (DSMS) and spatial DBMS using IntraMap. Besides, the developed ATMS can deal with the stream data of DSMS, the trajectory data of relational DBMS, and the spatial data of SDBMS concurrently. The implemented ATMS supports historical and one time query, continuous query and combined query. Application programmer can develop various intelligent services such as moving trajectory tracking, k-nearest neighbor (KNN) query and dynamic intelligent navigation by using components of the ATMS.

  • PDF