• Title/Summary/Keyword: Traffic prediction

Search Result 698, Processing Time 0.026 seconds

TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON UPSTREAM TRAFFIC (교통량예측모형의 개발과 평가)

  • 김창균
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.84-98
    • /
    • 1995
  • Network-based model were developed to predict short term future traffic volume based on current traffic, historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict the downstream traffic in a specific time period. Three models were developed for traffic flow prediction; a combination of historical average and upstream traffic, a combination of current traffic and upstream traffic, and a combination of all three variables. The three models were evaluated using regression analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system is devised based on the relationships between the beginning period of prediction and the previous periods. The developed models were applied to 15-minute freeway data obtained by regular induction loop detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts under congested traffic condition. The prediction systems perform better in the 15-minute range than in the ranges of 30-to 45-minute. It is also found that the combined models usually produce more consistent forecasts than the historical average.

  • PDF

A Study on the Improvement of the Road Traffic Noise Prediction for Environmental Impact Assessment (환경영향평가시 도로교통소음예측에 관한 개선방안 연구)

  • Lee, Nae-Hyun;Park, Young-Min;Sunwoo, Young
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 2001
  • Recently the road traffic noise has appeared as a significant environmental issue because of dramatic increase of vehicles and expansion of newly constructed road. Therefore, this study proposes the method that improves prediction factors and models through analysis of the existing road traffic noise prediction model. Prediction factors can be improved by establishing guideline for diffraction attenuation and applying daily traffic discharge, peak traffic discharge, and average traveling speed through an analysis of level service. Prediction must be made by periods of one or five years during 20 years. Prediction models also can be improved to include better prediction model through setting the database, establishing functional relation between physical properties and noise levels by acoustic analysis, and developing models for road traffic noise prediction in residential areas.

  • PDF

A comparative Study of Noise Prediction Method for Road Traffic Noise Map -Focused on Foreign Traffic Noise Prediction Method- (소음지도 제작을 위한 도로교통 소음예측식 비교연구 -국외 예측식을 중심으로-)

  • Jang, Hwan;Bang, Min;Kim, Heung-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.709-714
    • /
    • 2008
  • The various computer programs are used in computer simulation of the traffic noise prediction. But the difference or problem of calculation method used for road traffic noise prediction is not exactly investigated. In this paper, Road traffic noise is predicted on the specific regions by using four prediction methods such as XPS31-133 model(France), RLS-90 model(Germany), ASJ RTN model(Japan) and FHWA model(U.S.A.), which are operated by a program named SoundPLAN, a program to predict road traffic noise. Those prediction values are compared with a measurement value. The results show that four prediction values for taraffic noise are a little different, because of various input factors according to the prediction methods.

  • PDF

GOP ARIMA based Bandwidth Prediction for Non-stationary VBR Traffic (MPEG VBR 트래픽을 위한 GOP ARIMA 기반 대역폭 예측기법)

  • Kang, Sung-Joo;Won, You-Jip
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.301-303
    • /
    • 2004
  • In this work, we develop on-line traffic prediction algorithm for real-time VBR traffic. There are a number of important issues: (i) The traffic prediction algorithm should exploit the stochastic characteristics of the underlying traffic and (ii) it should quickly adapt to structural changes in underlying traffic. GOP ARIMA model effectively addresses this issues and it is used as basis in our bandwidth prediction. Our prediction model deploy Kalman filter to incorporate the prediction error for the next prediction round. We examine the performance of GOP ARIMA based prediction with linear prediction with LMS and double exponential smoothing. The proposed prediction algorithm exhibits superior performam againt the rest.

  • PDF

A network traffic prediction model of smart substation based on IGSA-WNN

  • Xia, Xin;Liu, Xiaofeng;Lou, Jichao
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.366-375
    • /
    • 2020
  • The network traffic prediction of a smart substation is key in strengthening its system security protection. To improve the performance of its traffic prediction, in this paper, we propose an improved gravitational search algorithm (IGSA), then introduce the IGSA into a wavelet neural network (WNN), iteratively optimize the initial connection weighting, scalability factor, and shift factor, and establish a smart substation network traffic prediction model based on the IGSA-WNN. A comparative analysis of the experimental results shows that the performance of the IGSA-WNN-based prediction model further improves the convergence velocity and prediction accuracy, and that the proposed model solves the deficiency issues of the original WNN, such as slow convergence velocity and ease of falling into a locally optimal solution; thus, it is a better smart substation network traffic prediction model.

Development of Traffic Accident Prediction Model Based on Traffic Node and Link Using XGBoost (XGBoost를 이용한 교통노드 및 교통링크 기반의 교통사고 예측모델 개발)

  • Kim, Un-Sik;Kim, Young-Gyu;Ko, Joong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.2
    • /
    • pp.20-29
    • /
    • 2022
  • This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

Adaptive MPEG Traffic Prediction

  • Jung, Souhwan;Yoo, Jisang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.7-13
    • /
    • 1997
  • This paper addresses traffic prediction issues on MPEG. A new adaptive traffic prediction scheme is proposed using MPEG picture characteristic that picture traffic depends on the coding mode of that picture, that is, I, P, and B mode. Our prediction scheme, which is based n picture decomposition (PD) and the cross-correlation of the different types of pictures, has better performance in predicting bursty MPEG traffic than that of the first-order autoregressive (AR) prediction scheme. Our simulation results show that the performance is further improved about 15% by utilizing the cross-correlations between pictures.

  • PDF

An Adaptable Integrated Prediction System for Traffic Service of Telematics

  • Cho, Mi-Gyung;Yu, Young-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.171-176
    • /
    • 2007
  • To give a guarantee a consistently high level of quality and reliability of Telematics traffic service, traffic flow forecasting is very important issue. In this paper, we proposed an adaptable integrated prediction model to predict the traffic flow in the future. Our model combines two methods, short-term prediction model and long-term prediction model with different combining coefficients to reflect current traffic condition. Short-term model uses the Kalman filtering technique to predict the future traffic conditions. And long-term model processes accumulated speed patterns which means the analysis results for all past speeds of each road by classifying the same day and the same time interval. Combining two models makes it possible to predict future traffic flow with higher accuracy over a longer time range. Many experiments showed our algorithm gives a better precise prediction than only an accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.