iﬂ%’“@?-“-‘?’%



AEE ASEZY Nyt Frt

4 2

1995 | 2 € 28 &



TRAFFIC-FLOW-PREDICTION SYSTEMS BASED ON
UPSTREAM TRAFFIC

Changkyun Kim

ABSTRACT

Network-based model were developed to predict short term future traffic volume based on current traffic,
historical average, and upstream traffic. It is presumed that upstream traffic volume can be used to predict
the downstream traffic in a specific time period. Three models were developed for traffic flow prediction: a
combination of historical average and upstream traffic, a combination of current traffic and upstream
traffic, and a combination of all threc variables. The three models were evaluated using regression
analysis. The third model is found to provide the best prediction for the analyzed data. In order to balance
the variables appropriately according to the present traffic condition, a heuristic adaptive weighting system
is devised based on the relationships between the beginning period of prediction and the previous periods.
The developed models were applied to 15-minute freeway data obtained by regular induction loop
detectors. The prediction models were shown to be capable of producing reliable and accurate forecasts
under congested traffic condition. The prediction systems perform better in the 15-minute range than in the
ranges of 30- to 45-minute. It is also found that the combined models usually produce more consistent
forecasts than the historical average.

BACKGROUND

Several traffic management strategies were deployed to relieve traffic congestion in urban areas. They
range from increasing road capacity to managing demand. A strategy for effective diversion of traffic
during congestion-causing events, a major issue of Advanced Traffic Management Systems (ATMS), could
maximize the use of available capacities in the roadway systems, thus saving travel time and minimizing
congestion cost. However, when areawide diversion is attempted, pre-planning of diversion roufes is
frequently difficult due to the presence of multiple alternate routes. Once the alternate routes for diversion
are determined, one or more routes must be selected at a particular point in the system to divert the traffic
(Hobeika et al., 1992 and 1993). By utilizing real-time traffic information from roadway facilities, the
traffic may be appropriately assigned to each candidate route. However, since traffic flow patterns change

all the time, a control strategy based on the previous traffic flow pattern may no longer be good a few
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minutes later. For example, even if an alternate route selected for diversion is not congested at the current

time, one part of the chosen route may be congested by the time the driver reaches that part of the network.
Thus, forecasting future traffic flow variables for each link along the diversion routes is a required process
for selecting the most efficient alternate route (Oda, 1990). If a prediction system representing the traffic
flow-fluctuation over time could be developed, it would help produce reliable forecasts for solving such -
route guidance problem. In this paper, the term forecasting has been used interchangeably to the term
prediction.

CONCEPT

Traffic conditions in a network vary considerably over time. In order to look ahead, a prediction algorithm
that describes the time-varying traffic conditions throughout the network is needed. Here, three variables
are investigated to assess the variability in traffic conditions. The current traffic information (called
current) obtained from roadway sensors is one of the essential means of surmising the traffic trend and is a
component of the prediction model (Ahmed and Cook, 1979). "I'his requires effective communication
between traffic control center and roadway detectors to obtain this reliable traffic information. Practically,
data from four previous time-series with 15-minute interval serve as current traffic information. Next, the
historical average (called hist. avg.) represents time-of-day pattern. This variable is used to smooth the
abrupt changes of the current traffic flow and avoid extreme forecasts (Nihan and Holmesland, 1980).
Finally, the upstream traffic, called upstream, is added as a new variable of the network-based prediction
model. It is introduced to represent the dynamic nature of traffic flow. The quality of the network-based
prediction model depends on the way those three variables are combined. The adaptive weighting system

combines the three variables based on current traffic condition.

Traffic flow must be investigated throughout the whole network for more prompt and efficient control of
traffic under congestion conditions. A traffic prediction model (Kim and ﬁobeika, 1993) that only relies on
traffic information from a specific link may not detect changes in traffic elsewhere in the network, thus
resulting in wrong traffic-control decisions. Therefore, a study of the relationships between the segments .
along the network is required to help forecast the traffic more accurately. A main uni-direction freeway is
chosen as a source of data for the new prediction systems. It has been assumed that upstream traffic for
short-term prediction largely affects the concerned segment on the downstream, called study link. Traffic
volume is used to represent the traffic conditions on the roadway. Speed data at the present time is only
used to identify the upstream traffic affecting the prediction for the study link. The upstream segments that
affect the downstream study link are first identified based on current travel times. The upstream link
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(called origin link) that includes the traffic affecting the downstream study link is determined by taking 15
minutes current travel times between the two links. '

Traffic data sets collected by the INformation FOR Motorists (INFORM) systems are utilized for
developing and evaluating the prediction model, and examining the upstream traffic for purposes of the
prediction. The traffic volume, speed, and occupancy at the Long Island Expressway (L.LE./Rt. 495) in
New York from Hauppauge to Kew Gardens (about 30 miles) were collected at 15-minute intervals for 22
weekdays during June, 1993. The 17 links separated by two miles were éelected for this study, because of
the long interval chosen (15 minutes).

MULTIPLE COMBINED PREDICTION MODELS

In order to conduct the short-term prediction, three combined models were developed. The first model
combines two variables ; upstream traffic and historical average.

é}::: u(al Ui+k +a, Ué-f(k—l) +a3U{+(k+l)) +’YHi¢.,.1

7. ;= Forecasts attime t+1 onlink i

UK = Observed traffic at time t n link i +K (crigin link)

UK = Obeerved traffic ot time t on link i-+(k -1) (adjacent lnk to origin link)

UK = Observed traffic at time t on link i +(k-+1) (adjacent link to origin link )

H; ) =Historical average in time t+1 at link i

al ,a2 ,a3,a,mdy=Weighﬁngpaametas
For the upstream component, three sub-variables are chosen in the above model. Since fluctuation of
traffic may affect the links around the origin link at the location where it takes 15 minutes to reach the
study link, the adjacent two links of the beginning link are also chosen as upstream traffic components.
The parameter a, among the three parameters (ai, a;, and a3) has the heaviest weights because of the exact
travel time between the origin link and the study link (a;=1/2, a,=1/3, and a;=1/6). The historical average
is obtained from the previous days data. For instance, if the historical average for 8 A M. in a specific day
is to be obtained, the values at 8 A M. for 21 previous days are averaged. In this manner, the historical
averages are predetermined and updated.

In the second model, upstream and current traffic conditions are combined. Four previous terms during one
hour (15-minutes interval) are utilized as the current traffic component. The amount of previous intervals

required for the current component is really a matter of the sampling rate. The ‘b’ parameters for the
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‘current’ component in the second and third prediction models are also intuitively obtained for the current
component. Since the 'b,' component contains the most recent time-series data at the study link, it has the

largest portion among the four parameters. The weighting values of the remaining 'b' parameters are

determined over time. The second model is shown as follows:

z e ui,*kﬂz (,r;“(k‘l)+a3 U{*(k“))m(bl c{+b2 b s d_+b X
where

Ch=Ourrent trffic i fime  t fik i

Ch_y=Curret traffc n time:t -1 Tk i
C_;=Ourent tatfic intimet -2 o Jivk i
C_3=Ourent traffc in ime - 3 atlnk i

al 82 a3 bl b2 b3 o, and B=Weighting parameters

The third model contains all three variables, which are upstream traffic, historical average, and current
traffic. The model is as follows:

d.ﬂ= o(al U{+k “, Ii-*(k—l) +a, L{*(k“)) +B(b1 c{+b2 C{-l""’3 ({_2+b 4 c{__a)ﬂHLl

CRITERIA FOR COMPARISONS

MAPE, RMSE, Accuracy Ratio were used to compare in the prediction performance of the three models.
The Mean Absolute Percentage Error (MAPE) is defined as

ZZt

MAPE=(1) § |-t
s t=1 zt

where
Z = observed traffic data

A
Zt =forecasts,

where S is the total number of forecasts made. The MAPE is a measure of the expected error associated
with an individual forecast (Ahmed, 1989). The accuracy ratio (Q-ratio) is to measure the quality of the
modeled values (Saha, 1990). The rules that applies for that ratio are:

If the observed value is greater than the modeled value, then Q = observed / modeled.
If the modeled value is greater than the observed value, then Q =modeled / observed.

The Root Mean Square Error is
_87_



COMPARISONS OF THE THREE LOOK-AHEAD MODELS

The three models were evaluated using regression analysis. Since the number of independent variables
contained in the three models differ, the reliability of each model had to be examined. As a result of
developing regression models, it is interesting to compare the parameters of the upstream component among
the three models in the three prediction ranges. The parameter for the upstream component of the first
model in the 15-minute forecasting is the highest, which means it has the largest influence on the prediction
performance. In contrast, there is a very small amount of weighting value portioned in the upstream
component of the second model. It is due to high reliance on the current traffic component. The upstream
parameter has been somewhat increased in the third model. It indicates that combining the three variables
plays some role in providing more weights on the upstream traffic component. The upstream parameters in

the 30- and 45-minutes ranges showed same trend as in the 15-minute range.

The regression model forecasts are compared to one another in terms of MAPE, RMSE, and Q-ratio in
Table 1. A comparison of the quality of the forecasts are also shown in Table 1. As expected, the third
model has the lowest mean error, variance, and standard error in MAPE. The second model including the
'upstream’ and ‘current' variables are also better than the first model including 'upstream' and 'historical
average'. The distribution of mean, that is, Standard Error (S.E.) of mean tells that models II and IIl are
almost always better than model I. Considering the above comparisons, it is noted that the second and third
models provide better forecasts. However, the fixed parameters obtained from regression analysis may not
be adaptive to real-time application due to the incapability of updating the mode! structure according to
changes in current traffic flow. Thus, it is necessary to build an adaptation that accommodates changes
over time and traffic conditions.

Table 1. Comparison of three _@ession models
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ADAPTIVE WEIGHTING SYSTEMS FOR REAL-TIME APPLICATION

Time-responsive weighting systems were developed to obtain the most appropriate parameters for real-time
application_of the prediction. Since three variables (upstream, current, and hist. avg.) are all time-
dependent data, they will be influenced by the adaptive/time-responsive weighting system. All possible
weighting scenarios for model I and II are shown in Table 2.

Table 2. All possible weighting scenarios for model I and II

1 0.9 0.1
2 0.8 0.2
3 0.7 0.3
4 0.6 0.4
5 0.5 0.5
6 0.4 0.6
7 0.3 0.7
8 0.2 0.8
9 0.1 0.9

The two combined models generate nine sets of scenarios in terms of the fluctuation of traffic condition
over time. The next step is to devise a methodology for selecting the best scenario for the traffic condition

at the current time interval. Two decision factors emerge:
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The first factor is the percentile error (L) between the differentiate of the beginning of the prediction and
the historical averé.ge (£,), and the average of the differentiate of the four previous terms (f;). The basi'c
concept of the percentile error (L) is to measure how the traffic volume has fluctuated over the assigned
interval. It is based on the supposition that reliable forecasts can be determinéd by carefully investigating
the fluctuation of the traffic flow over time. If the differentiates of the traffic volume data in each interval
are small then the historical average term must be heavily weighted compared to the other terms. The
scenario 1 in Table 2 presents the case where historic;l averages are heavily weighted (y=0.9 and 0=0.1).

Conversely, if there exist huge percentile errors (as in scenario 9 in Table 2) a weight that relies heavier on



the upstream component than the historical average/current components is more suitable for forecasting.

The selection numbers in Table 2 have been incremented as the percentile errors increase.

The second decision factor (M) is the standard deviation of the differentiates between the previous four
intervals including the beginning of the prediction. It is devised to detect unusual trends in the recent past.
If there are huge variances in recent traffic flow, the upstream traffic will have greater influence than the
historical averages/current traffic in terms of the prediction performance. Thus, the parameters (¢, B, and

y) are determined according to the combination of decision factors as shown in Table 3.

Table 3. Adaptive weighting system for model I and II

L(%) | 049 | 50-99 2
M 5099 | 0-49

L(%) | 049 | 50-99 [100-199 3
M | 100-149 | 50-99 | 0-49

L(%) | 049 | 50-99 [100-199] 200-299

M | 150-199 [100-149] 5099 | 049

L(%) | 049 | 50-99 [100-199] 200-299 | >300

M | 200-299 |150-199/100-149] 50-99 | 0-49

L(%) | 049 | 50-99 [100-199] 200-299 | >300

M >300 |200-299/150-199] 100-149 | 50-99

L (%) 50-99 [100-199] 200299 | >300

M >300 |200-299] 150-199 | 100-199

L (%) 100-199] 200-299 | >300

M >300 | 200-299 | 200-299

L (%) 200-299 | >300

M >300 | >300

The two decision factors are empirically harmonized in Table 3. The percentile error ranges (L) have been
diagonally incremented while the standard deviation ranges (M) has been vertically incremented. The
combinations of the two decision factors are diagonally deployed by the order of selection number. The
difference between models I and II in applying this procedure is that the current component in the second
model replaces the historical average in the first model. Meanwhile, the third model, with three variables to

combine, has twelve sets of possible scenarios as shown in Table 4.



Table 4. Adaptive weighting systems for third combined model in 15-minutes forecasts

50-99

0-99

50-99

100-199

50-99

>200

>300 0-99 10 0.2 0.2 0.6
>300 100-199 11 04 0.2 04
>300 >200 12 0.6 0.2 0.2

The upstream and current parameters are determined based on comparison with the hist avg parameter.
The current is more weighted in a lower numbered scenario than in higher model within a specific
historical average parameter chosen. For example, look at model 4, 5, and 6 from Table 4. The fourth
model (lower-numbered model) has 0.5 for the current, which is much larger than 0._1 for the upstream.
The percentile error (L) and standard deviations (M) are computed to select the most appropriate scenario
for the current traffic condition. In the farther forecasts (30- and 45-minute intervals), the method of
developing the systems and of obtaining the combination are exactly the same as the ones in the 15-minute
forecasts as well as in the structure of the systems. There, however, is a small difference in combining the
parameters and the decision factors. Since the upstream and current variables lose their reliability in that
farther prediction, the historical average parameters ranging from 0.4 to 0.2 occupy only five out of 12
scenarios (In comparison to nine out of 12 scenarios in the 15-minute forecasts). In other words, reliance
on the historical average becomes larger in this range. There is a little modification in combining two
decision factors corresponding to the new combination sets of parameters. The weighting systéms m 45-
minute forecasts show a little different trend from the systems in 30-minute forecasts. They are also based
on the importance of historical averages in performing prediction. The remarkable change in 45-minute
forecasts is the disappearance of a combination set with 0.2 of historical average paranieters and the
expansion of the sets with 0.4 of historical average parameters. Correspondingly, the order of decision
factors are determined.



EVALUATION OF THE MULTIPLE COMBINED MODELS

The forecasts were calculated using the multiple combined models with adaptive heuristic weighting
systems. The three upstream traffic, four current traffic, and/or historical averages at the concerned time
period are the variables for the prediction. The resultant forecasts were compared to one another, as well
as to the historical averages.

-With peak-hour traffic data

The peak-hour traffic data between 6 A.M. and 9 A M. were selected for evaluation of the multiple models.
One-hundred forty randomly selected data sets were used. The mean values of three models in the three
criteria are all lower than the historical averages as shown in Table 5. As expected, the third model has the
lowest value among the three models. Also, the standard error for the mean of the three models are lower
than the historical average (Ott, 1988). Intuitively, model Il in MAPE has prevailed historical average 99
times out of 140 chances (70 percent). MAPE at model I and IT have beaten 91 times (65 percent) and 97
times (68 percent) out of 140 chances, respectively. By the distribution of means and the intuitive
comparison, the second and third model present almost equal accuracy of prediction performance.

Table 5. Comparison of three models and historical averages in 15-minute forecasts using peak-hour traffic
data between 6 A M. and 9 AM.

There is no distinct difference between 30-minute forecasts and 15-minute forecasts as shown in Table 6.
Indications are that 30-minute forecasting performs as accurately as 15-minute forecasts. Intuitively,
MAPE of mode! I prevailed 75 percent over historical average, while models I and II prevailed 60 percent
and 64 percent over historical average, respectively.

Remarkably different results emerged from the 45-minute forecasts in Table 7. The first model is the best
among the three combined models. The second and third models are even worse than the historical average.
This is due to the low reliability of current and upstream traffic values used in this farther prediction. The
two variables are vulnerable because of unexpected ramp traffic and other interruptions between the study
link and the origin link. The estimated, not observed, current traffic values from 15- and 30-minute



forecasts also interfere with good prediction performance. Probably, the historical average alone is good
enough to predict the traffic in that range.

Table 6. Comparison of three models and historical averages in 30-minute forecasts using peak-hour traffic
data between 6 A M. and 9 A M.

Table 7. Comparison of three models and historical averages in 45-minute forecasts using peak-hour traffic
data between 6 A M. and 9 A M.

-Non-peak-hour traffic data

Next, the multiple combined models are evaluated using non-peak hour traffic data. First, the traffic data
between 11 A.M. and 3 P.M. were randomly selected for evaluation of prediction performance. The results
from 15-minute forecasts are shown in Table 8. All three criteria brought more accurate forecasts than
historical average alone. The third model, of course, resulted in the best forecasts out of three models. The
unique finding of Table 8 was that the first model predicted better than the second model,

Table 8. Comparison of three models and historical averages in 15-minute forecasts with traffic data
between 11 AM. and 3 P.M. '




which is in variation to the peak-hour test. It may be due to the absence of major change in traffic in the

non-peak hour compared to the usual traffic flow. The historical average component of the first model
plays a bigger role in prediction than the current traffic of the second model. Regardless of the invaluable
current traffic component, the prediction performances have been improved by combining current traffic

with the other two variables (hist. avg. and upstream).

In the MAPEs and RMSE:s of Table 9, the forecasts of historical averages are better than the ones of the
first and second models. It is noted that the combination of two variables in the 30-minutes range with non-
peak hour data does not improve prediction performance. The variances of the MAPE in three models are
also poorer than the values of historical average. The Q-ratios of the first and second models has equal or
less values than historical average. Combining three variables has again improved the prediction

performance.

Table 9. Comparison of three models and historical averages in 30-minute forecasts with traffic data
between 11 A M. and 3 P.M.

A MODEL SELECTION RULE FOR BETTER PREDICTION

Throughout the evaluations and comparisons of the three combined models, the third model generally seems
to result in the best forecasts due to the many variables it comprised. However, the first or second model is
often better than the third model. Current traffic conditions must be considered to select the best model. In
order to accomplish that, monthly average travel times along the network were compared to the travel times
under current traffic conditions. If a specific day shows a traffic condition different from the monthly
average traffic condition, the traffic on that day has to be considered in a different way for better
prediction. The rule of selecting a model in terms of current traffic conditions is as follows :

“If current travel time along the network is 25 percent longer than the monthly average travel times, use the
second model for the prediction performance. Otherwise, use the third model for the prediction

performance.”



This rule is based on the idea that under congested traffic conditions current traffic plays a heavvi‘ér‘ role

than upstream and historical average traffic. The threshold value--25 percent—-is determined by lookiﬁg
over the predictions from the evaluation of the models throughout various sets of data. The peak-hour
traffic data is applied to this rule for 15-minutes forecasts in Table 10. The error rate from final decision
rule (“Rule.” in Table 10) presents the best forecasts among five models including historical average, -

which means that the rule was effective in improving the prediction performance.

Table 10. Evaluations of the values by final decision in 15-minute forecasts with traffic data between 6
AM. and 9 AM.

COMPARISON OF THE HEURISTIC COMBINED MODEL WITH OTHER FORECASTING
MODEL

Until now, the forecasts from the combined model developed here have been compared with historical
average only. It is due to the finding that the historical average is as good as traditional forecasting model
in terms of prediction performance. Urban traffic control is also dependent upon the historical traffic data.-
Attributes of the links or network used are a consideration for the comparison between the models. While
the heuristic combined model focuses on the mainstream traffic on the freeway, some other models study
the ramp traffic. Different time interval is another interruption for that compaﬁson. Beyond the above
reasons, there is a practical difficulty to compare the different two or more models. It is a lack of generally
agreeable prediction model. Owing to the above reasons, the combined model was compared with
historical average only. waever, UTCS (Urban Traffic Control System) model was selected to compare
with the combined models.

The UTCS-2 model is as follows:
’ _ t=1 g
e m Yt )+(1-—a)g20a € ot ™ st
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where

A
V't =predicted volume at time t;
m, = historical volume at time t,

f =measured volume at time t;

o.=constant (0.2),
v =smoothing coefficient (0.9).

The UTCS-2 model rely much on the difference of predicted volume and historical volume. The
parameters such as o and y are very important in combining the values as do in the combined model
developed here. The values (0.2 and 0.9) of the parameters were captured from traffic data in Washington
D.C. (Stephanedes, 1981). The area-specific parameters are not adaptive for current traffic flow. Let us
look at the prediction performances between the UTCS-2 model and the heuristic combined models. The
peak-hour traffic data were used for that comparison.

d the UTCS

odel

It is obvious that the combined models are superior to the UTCS model in prediction performance. In the
three criteria, the UTCS model is even worse than the historical average. The results indicate that the
adaptive weighting system performs overall better than the fixed weighting parameters.

CONCLUSIONS

By incorporating upstream traffic into the three combined models better forecasts than historical average
are usually produced. Especially, the combined models performed well in the 15- and 30-minutes forecasts
under peak-hours traffic conditions. However, the predictions by the combined models under non-peak-
hours traffic resulted in no improvements. Since there are not much changes in traffic on non-peak-hours
compared to the daily average traffic, the models including two or three variables have not produced
forecasts better than the historical average. Also, in the 45-minutes look-ahead, the forecasts from the
models were worse than the historical average. It is due to the variables used in the models for farther
forecasting. The upstream data that were selected based on the current travel times were not reliable
because of many factors caused by long trip from origin link to study link.
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Whenever the MAPE rates are greater than 20 percent, the model was better than the historical average in

prediction performance. It represents that the combined models performs efficiently under congested traffic
condition. The historical average is not able to detect the changes in traffic on the roadways caused by an
incident. It indicates that the combined models will be effective for prediction under congested traffic
condition. The prediction models developed in this study relied only on the current traffic information, not -
the future one. Even though a new variable--upstream--from an extended dimension was used for the

network-based prediction model, the three variables were limited to current traffic information.

RECOMMENDATIONS FOR FURTHER STUDY

If all the link data throughout the network are available, it will be possible to evaluate more deeply the
network-based prediction model. In order to conduct such an evaluation, an advanced traffic data
collection system is required. There is no doubt that reliable and prompt traffic data through the advanced
data collection system (Dickinson and Waterfall, 1984) are necessary for more efficient forecasting. In
judging current traffic condition and identifying upstream traffic, speed data plays a big role. If data sets
from various places are available in the future, the combined models developed can be evaluated in diverse
ways. The availability of data collected from congested area caused by incidents will allow study of the

vehicle movements under conditions caused by incidents (non-recurring congestion).

The 15-minute interval data were only used to develop and evaluate the network-based prediction model.
The shorter interval data must be used to compare the prediction performance between the link-based
model and the network-based model. In addition to that comparison, the traffic flow of the arterial must be
studied separately. Although the ramp traffic along the main highways was ignored in this research, a
complicated network including the ramps should be considered for better performance. The prediction
models with the current traffic information may have a limitation to further improve the prediction
performance. A new technique such as neural network analysis may be necessary to approach this problem

in a different point-of -view.
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