최근 들어, 네트워크의 급속한 발전으로 온라인 뱅킹과 주식 거래 같은 응용프로그램들의 사용이 증가함에 따라 데이터에 대한 보안은 점점 더 중요해 지고 있다. 따라서, 데이터 보호를 위해 인터넷과 같은 개방형 네트워크에서 공개키 또는 대칭키 암호 알고리즘이 널리 사용되고 있다. 일반적으로 공개키 암호시스템은 인수분해와 이산대수의 문제를 기반으로 하고 있어, 대칭키 암호시스템에 비해 처리속도가 상대적으로 느리다. 공개키 암호시스템 중 타원곡선 암호는 RSA에 비해 보다 작은 사이즈의 키를 사용하여도 동일한 보안성을 제공하는 장점이 있어 처리 속도가 빠르다. 본 논문에서는 실수체를 기반으로 하는 타원곡선 암호의 효율적인 키 생성 방법을 제안한다.
2014년 3월, 세계 최대의 비트코인 거래소였던 마운트곡스(Mt. Gox)가 해킹 공격으로 폐쇄된 사건 이래로 최근까지 국내 암호 화폐 거래소인 코인레일(Coinrail)이 해킹되는 등 사건이 잇달아 발생하고 있다. 이러한 거래소 해킹 사건은 단순한 시스템 해킹 수준을 넘어 사용자들의 자산이 탈취되는 자산 손실로까지 피해가 확산되고 있어, 암호 화폐 거래소에 대한 보안 이슈가 발생하였다. 위와 같은 문제를 해결하기 위해 탈중앙화 거래소(DEX, Decentralized Exchange)가 활발히 연구되고 있으나 이 또한 문제를 완화시킬 뿐 해결방안으로서는 부족한 실정이다. 따라서 본 논문에서는 기존의 암호 화폐 거래소들에 대한 보안위협을 분석하고 이에 대한 보안 요구사항을 도출한다. 또한 개인용 보안장치를 통한 안전한 분산형 암호 화폐 거래 모델을 제안하여 본 논문에서 제안하는 거래 모델이 앞선 보안위협에 대한 해결책임을 입증한다.
최근 웹툰이나 웹소설처럼 저작물로 보호되어야 할 디지털 콘텐츠들이 손쉽게 복제되어 유포되면서 불법 복제가 사회적인 이슈로 떠오르고 있다. 이와 관련하여 본 논문에서는 블록체인을 적용하여 저작물 위변조 방지, 보안성 향상, 거래 속도 향상, 비용 절감, 가시성을 향상시킬 수 있는 저작권 관리시스템을 제안하였다. 시스템은 기존과 같이 공식적으로 저작권을 등록할 수 있고 더불어 단순한 아이디어 수준의 저작물도 시스템에 등록할 수도 있다. 후자의 경우는 창작 아이디어가 떠오르면 언제든지 시스템에 등록하여 추후에 자신의 독자적인 저작물이라는 것을 증명할 수 있는 수단으로 활용할 수 있다. 시스템은 특히, 용량이 큰 콘텐츠의 경우, 트랜잭션에 콘텐츠의 해시 결과 값만을 포함시키고 원본 콘텐츠는 별도로 관리하여, 네트워크 참여 노드들이 처리해야 할 데이터의 양을 줄이고 스토리지 용량을 대폭 감소시킨다.
블록체인은 거래의 기록인 트랜잭션을 관리하는 중앙서버 없이 분산네트워크에 참여하고 있는 모든 노드가 그 거래의 내용을 각자 관리하는 기술이다. 특정 기간의 거래 기록을 담고 있는 블록은 이전 블록에 대한 해쉬 값을 참조하여 블록체인에 연결되고, 새로운 블록이 추가된 체인은 다시 모든 노드와 공유한다. 기존의 인증서를 이용한 트랜잭션이 핀테크를 거쳐, 가까운 미래에는 블록체인을 이용하는 응용의 등장이 예상된다. 본 연구에서는 기존 모델의 문제점 등을 분석하고, 앞으로 도래될 블록체인을 적용한 거래모델을 제안한다. 다양한 응용 중에, 본 연구에서는 4차 산업혁명을 이끌 주제 중에서 에너지 판매시장을 목표로 거래모델을 전개한다. 제안한 모델의 분석결과, 기존의 방법보다 안전한 에너지 판매 거래의 가능성을 확신할 수 있었다.
본 논문은 분산자원 집합 거래시장의 활성화와 에너지 관리의 중요성이 증가되면서 에너지 관리 모니터링 기술로서 합산된 전체 전력으로부터 각각의 가전제품의 전력을 찾아내는 비 침입 부하 모니터 기법을 제안한다. 본 논문에서는 데이터 전처리를 통해 각 가전제품들의 power on-off상태가 나오도록 한다. 이러한 데이터를 LSTM을 모델로 사용하여 각 가전제품들의 power on-off 상태를 예측한다. 예측한 상태들을 데이터 후처리를 한 후, 실제 상태들과 비교하여 정확도를 측정한다. 본 논문에서는 전자제품의 개수, 데이터 후처리 방법과 Time step size를 다르게 하여 정확도를 측정하여 비교한다. 전자 제품의 개수가 6개이고, Round함수로 데이터 후처리 방법을 사용하고, Time step size는 6으로 설정하였을 때, 가장 높은 정확도가 나온 것으로 측정되었다.
본 논문은 가상통화의 특성을 활용한 테러자금조달에 대한 잠재적 위협을 분석하기 위한 것이다. 이를 위해 기존 테러자금조달 위협과 가상통화 관련법 및 제도를 분석하고 가상통화를 활용한 테러자금조달에 대한 사례를 통해 잠재적 위협을 도출하였다. 가상통화가 등장하기 이전 국내에서 가상통화를 활용한 테러자금조달 위협은 높지 않으나, 가상통화가 활성화되기 시작한 '15년 이후 많은 해외 테러조직과 북한 등 테러지원국에서는 가상통화를 간접적으로 모금하거나 해킹 등을 통해 직접 테러자금을 조달하고 있는 실정이다. 특히, 국내는 가상통화의 근거법이 부재한 상황으로, 이로 인해 현재 법령과 제도 그리고 실질적 대응 체계에 분명한 문제가 식별되었다. 이를 보완하기 위해 본 논문에서는 관련 사례들을 분석하고, 분석된 사례들을 토대로 제도적 대응방안과 기술적 대응방안을 제시하였다. 가상통화는 새롭게 등장한 개념으로 기존 제도권 안에서 모든 문제를 해결할 수는 없다. 때문에 우리는 현재의 한계점을 인정하고 이를 개선하기 위한 제도적·기술적 노력을 다해 나가야 한다.
인터넷 불법금융광고는 인터넷 카페, 블로그 등을 통해 통장매매, 신용카드·휴대폰결제현금화 및 개인신용정보매매 등 불법금융행위를 목적으로 한다. 금융감독당국의 노력에도 불구하고 불법금융행위는 줄어들지 않고 있다. 본 연구는 인터넷 불법금융광고 게시글에 파이썬 딥러닝 기반 텍스트 분류기법을 적용해 불법여부를 탐지하는 모델을 제안한다. 텍스트 분류기법으로 주로 사용되는 합성곱 신경망(CNN: Convolutional Neural Network), 순환 신경망(RNN: Recurrent Neural Network), 장단기 메모리(LSTM: Long-Short Term Memory) 및 게이트 순환 유닛(GRU: Gated Recurrent Unit)을 활용한다. 그동안 수작업으로 심사한 불법확인 결과를 기초 데이터로 이용한다. 한국어 자연어처리와 딥러닝 모델의 하이퍼파라미터 조절을 통해 최적의 성능을 보이는 모델을 완성하였다. 본 연구는 그동안 이뤄지지 않았던 인터넷 불법금융광고 판별을 위한 딥러닝 모델을 제시하였다는데 큰 의미가 있다. 또한 딥러닝 모델에서 91.3~93.4% 수준의 정확도를 보임으로써 불법금융광고 탐지에 딥러닝 모델을 실제 적용하여 불법금융광고 근절에 기여할 수 있기를 기대해 본다.
본 연구는 개인투자자들의 투자의사결정에 도움을 주고자, 증권신고서의 TF-IDF 텍스트 분석과 기계학습을 이용해 공모주의 상장 5거래일 이후 주식 가격 등락을 예측하는 모델을 제시한다. 연구 표본은 2009년 6월부터 2020년 12월 사이에 신규 상장된 691개의 국내 IPO 종목이다. 기업, 공모, 시장과 관련된 다양한 재무적 및 비재무적 IPO 관련 변수와 증권신고서의 어조를 분석하여 예측했고, 증권신고서의 어조 분석을 위해서 TF-IDF (Term Frequency - Inverse Document Frequency)에 기반한 텍스트 분석을 이용해 신고서의 투자위험요소란의 텍스트를 긍정적 어조, 중립적 어조, 부정적 어조로 분류하였다. 가격 등락 예측에는 로지스틱 회귀분석(Logistic Regression), 랜덤 포레스트(Random Forest), 서포트벡터머신(Support Vector Machine), 인공신경망(Artificial Neural Network) 기법을 사용하였고, 예측 결과 IPO 관련 변수와 증권신고서 어조 변수를 함께 사용한 모델이 IPO 관련 변수만을 사용한 모델보다 높은 예측 정확도를 보였다. 랜덤 포레스트 모형은 1.45%p 높아진 예측 정확도를 보였으며, 인공신공망 모형과 서포트벡터머신 모형은 각각 4.34%p, 5.07%p 향상을 보였다. 추가적으로 모형간 차이를 맥니마 검정을 통해 통계적으로 검증한 결과, 어조 변수의 유무에 따른 예측 모형의 성과 차이가 유의확률 1% 수준에서 유의했다. 이를 통해, 증권신고서에 표현된 어조가 공모주의 가격 등락 예측에 영향을 미치는 요인이라는 것을 확인할 수 있었다.
최근 딥러닝 기술이 주목을 받고 있다. 대중들의 관심을 받았던 국제 이미지 인식 기술 대회(ILSVR)와 알파고(AlphaGo)에서 사용된 딥러닝 기술이 바로 합성곱 신경망(CNN; Convolution Neural Network)이다. 합성곱 신경망은 입력 이미지를 작은 구역으로 나누어 부분적인 특징을 인식하고 이것을 결합하여 전체를 인식하는 특징을 가진다. 이러한 딥러닝 기술이 우리의 생활에 있어 많은 변화를 야기할 것이라는 기대를 주고 있지만 현재까지는 이미지 인식과 자연어 처리 등에 그 성과가 국한되어 있다. 비즈니스 문제에 대한 딥러닝 활용은 아직까지 초기 연구 단계로 향후 마케팅 응답 예측이나 허위 거래 식별, 부도 예측과 같은 전통적 비즈니스 문제들에 대해 보다 깊게 활용되고 그 성능이 입증된다면 딥러닝 기술의 활용 가치가 보다 더 주목받게 될 것으로 기대된다. 이러한 때 비교적 고객 식별이 용이하고 활용 가치가 높은 빅데이터를 보유하고 있는 전자상거래 기업의 사례를 바탕으로 하여 딥러닝 기술의 비즈니스 문제 해결 가능성을 진단해보는 것은 학술적으로 매우 의미 있는 시도라 할 수 있겠다. 이에 본 연구에서는 전자상거래 기업의 고객 행태 예측력을 높이기 위한 방안으로 합성곱 신경망을 활용한 '이종 정보 결합(Heterogeneous Information Integration)의 CNN 모델'을 제시한다. 이는 정형과 비정형 정보를 결합하여 다층 퍼셉트론 구조의 합성곱 신경망에서 학습시키는 모델로서 최적의 성능을 발휘하도록 '이종 정보 결합'과 '비정형 정보의 벡터 전환', 그리고 '다층 퍼셉트론 설계'로 하는 3개의 내부 아키텍처를 정의하고 각 아키텍처 단위로 구성되는 방식에 따른 성능을 평가하여 그 결과를 바탕으로 제안 모델을 확정하고 그 성능을 평가해보고자 한다. 고객 행태 예측을 위한 목표 변수는 전자상거래 기업에서 중요하게 관리하고 있는 재구매 고객, 이탈 고객, 고빈도 구매 고객, 고빈도 반품 고객, 고단가 구매 고객, 고할인 구매 고객 등 모두 6개의 이진 분류 문제로 정의한다. 제안한 모델의 유용성을 검증하기 위해서 국내 특정 전자상거래 기업의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 정형과 비정형 정보를 결합하여 CNN을 활용한 제안 모델이 NBC(Naïve Bayes classification)과 SVM(Support vector machine), 그리고 ANN(Artificial neural network)에 비해서 예측 정확도와 F1 Measure가 높게 평가되었다. 또 NBC, SVM, ANN에서 정형 정보만을 사용할 때 보다 정형과 비정형 정보를 결합하여 입력 변수로 함께 활용한 경우에 예측 정확도가 향상되는 것으로 나타났다. 따라서 실험 결과로부터 비정형 정보의 활용이 고객 행태 예측의 정확도 향상에 기여한다는 점과 CNN 기법의 특징 추출 알고리즘이 VOC에 사용된 단어들의 분포와 위치 정보를 해석하여 문장의 의미를 파악하는데 효과적이라는 점을 실증적으로 확인하였다는데 그 의미가 있다고 할 수 있겠다. 이를 통해서 CNN 기법이 지금까지 소개된 이미지 인식이나 자연어 처리 분야 외에 비즈니스 문제 해결에도 활용 가치가 높다는 점을 확인하였다는데 이 연구의 의의가 있다 하겠다.
연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.