• Title/Summary/Keyword: Tower data

Search Result 434, Processing Time 0.027 seconds

An Experimental Study on the Estimate of Wind Force Coefficient of Transmission Tower Rectangular Frame (철탑 사각골조의 풍력 계수 산정에 관한 실험적 연구)

  • Shin, Koo-Yong;Lim, Jae-Seob;Hwang, Kyu-Seok;Kil, Yong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.73-81
    • /
    • 2011
  • The wind force coefficient of a transmission tower frame shows several characteristics when the section shape, solidity ratio, and wind direction angle are changed. In this study, the wind force characteristics of a transmission tower frame with a basic structure were evaluated using different solidity ratios and wind direction angles in a wind tunnel test. According to the solidity ratio, the size of the structure and the rectangular-frame model of the transmission tower were changed by adding a two-dimensional (2D) or three-dimensional (3D) structure. The transmission tower's rectangular frame was tested by changing the wind direction angle of the 2D-type structure from 0 to $90^{\circ}$ and by changing the wind direction angle of the 3D-type structure from 0 to $45^{\circ}$ Based on the results that were obtained, it can be concluded that the wind force coefficient of a transmission tower frame can be used as preliminary data in deciding the transmission tower's wind load.

Study to Secure the Safety of Tower Cranes through Disaster Case Analysis at Construction Sites (건설현장의 재해사례 분석을 통한 타워크레인 안전성 확보 방안 연구)

  • Son, Seunghyun;Kim, Ji-Myung;Ahn, Sungjin;Na, Youngju;Kim, Taehui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.57-67
    • /
    • 2022
  • Tower cranes have an unstable superstructure, which means that there is a very high risk of accidents. It is necessary to establish preventive measures to ensure the safety of tower cranes at a time when active efforts are being made to reduce safety accidents involving tower cranes. As such, the purpose of this study is to analyze disaster cases to ensure the safety of tower cranes. For this study, 260 cases of tower crane disasters filed with the Korea Occupational Safety and Health Agency from July 2012 to July 2020 were analyzed. Through this analysis, it was found that lifting work was the most common of the work types, at 45.3%; while of the types of disasters, accidents caused by falls were the most common type, at 35.8%. In addition, with regard to the cause of accidents, work method defects was found to be the highest, at 38.8%. In the future, the findings of this study will be used as basic data to guide the establishment of policy to prevent tower crane accidents.

Wind-induced mechanical energy analyses for a super high-rise and long-span transmission tower-line system

  • Zhao, Shuang;Yan, Zhitao;Savory, Eric;Zhang, Bin
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.185-197
    • /
    • 2022
  • This study aimed to analyze the wind-induced mechanical energy (WME) of a proposed super high-rise and long-span transmission tower-line system (SHLTTS), which, in 2021, is the tallest tower-line system with the longest span. Anew index - the WME, accounting for the wind-induced vibration behavior of the whole system rather than the local part, was first proposed. The occurrence of the maximum WME for a transmission tower, with or without conductors, under synoptic winds, was analyzed, and the corresponding formulae were derived based on stochastic vibration theory. Some calculation data, such as the drag coefficient, dynamic parameters, windshielding areas, mass, calculation point coordinates, mode shape and influence function, derived from wind tunnel testing on reducedscale models and finite element software were used in calculating the maximum WME of the transmission tower under three cases. Then, the influence of conductors, wind speed, gradient wind height and wind yaw angle on WME components and the energy transfer relationship between substructures (transmission tower and conductor) were analyzed. The study showed that the presence of conductors increases the WME of transmission towers and changes the proportion of the mean component (MC), background component (BC) and resonant component (RC) for WME; The RC of WME is more susceptible to the wind speed change. Affected by the gradient wind height, the WME components decrease. With the RC decreasing the fastest and the MC decreasing the slowest; The WME reaches the its maximum value at the wind yaw angle of 30°. Due to the influence of three factors, namely: the long span of the conductors, the gradient wind height and the complex geometrical profile, it is important that the tower-line coupling effect, the potential for fatigue damage and the most unfavorable wind yaw angle should be given particular attention in the wind-resistant design of SHLTTSs

A data-driven method for the reliability analysis of a transmission line under wind loads

  • Xing Fu;Wen-Long Du;Gang Li;Zhi-Qian Dong;Hong-Nan Li
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.461-473
    • /
    • 2024
  • This study focuses on the reliability of a transmission line under wind excitation and evaluates the failure probability using explicit data resources. The data-driven framework for calculating the failure probability of a transmission line subjected to wind loading is presented, and a probabilistic method for estimating the yearly extreme wind speeds in each wind direction is provided to compensate for the incompleteness of meteorological data. Meteorological data from the Xuwen National Weather Station are used to analyze the distribution characteristics of wind speed and wind direction, fitted with the generalized extreme value distribution. Then, the most vulnerable tower is identified to obtain the fragility curves in all wind directions based on uncertainty analysis. Finally, the failure probabilities are calculated based on the presented method. The simulation results reveal that the failure probability of the employed tower increases over time and that the joint probability distribution of the wind speed and wind direction must be considered to avoid overestimating the failure probability. Additionally, the mixed wind climates (synoptic wind and typhoon) have great influence on the estimation of structural failure probability and should be considered.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

Numerical Study for the Performance Analysis and Design of a Crossflow- Type Forced Draft Cooling Tower

  • Choi, Young-Ki;Kim, Byung-Jo;Lee, Sang-Yun;Lee, Jung-Hee
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2000
  • A numerical study for performance analysis of a crossflow-type forced draft cooling tower has been performed based on the finite volume method with non-orthogonal body fitted, and non-staggered grid system. For solving the coupling problem between water and air, air enthalpy, moisture fraction, water enthalpy, and water mass balance equations are solved with Navier-Stoke's equations simultaneously. For the effect of turbulence, the standard k-$\varepsilon$ turbulent model is implied in this analysis. The predicted result of the present analysis is compared with the experimental data and the commercial software result to validate the present study. The predicted results show good agreement with the experimental data and the commercial software result. To investigate the influence of the cooling tower design parameters such as approach, range and wet bulb temperature, parametric studies are also performed.

  • PDF

Development of Compact Tower Monitoring System based on USN (USN 기반의 실시간 컴팩트 타워 감시 시스템 구축)

  • Kim, Ji-Young;Woo, Doug-Je;Lee, Jung-Hyun;Choi, Jong-Pil;Jang, Jun-Yong;Kim, Yong-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.570-571
    • /
    • 2011
  • CTMS(Compact Tower Online Monitoring System), which deals with the polymer insulation arms of new material, is the on-line monitoring system for verifying stability and reliability of a new Compact Tower. CTMS measures real time data from the installed sensors in a Compact Tower and transmission line, air craft warning lights for detecting and determining the life time and the replace cycle of these facilities. This paper introduces how develop the CTMS and proposes how it will be use.

  • PDF

Structural monitoring of a wind turbine steel tower - Part I: system description and calibration

  • Rebelo, C.;Veljkovic, M.;da Silva, L. Simoes;Simoes, R.;Henriques, J.
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.285-299
    • /
    • 2012
  • This paper describes the development and calibration of a structural monitoring system installed in a 80 meters high steel wind tower supporting a 2.1 MW turbine Wind Class III IEC2a erected in the central part of Portugal. The several signals are measured at four different levels and include accelerations, strains on the tower wall and inside the connection bolts, inclinations and temperature. In order to correlate measurements with the wind velocity and direction and with the turbine operational parameters the corresponding signals are obtained directly from the turbine own monitoring system and are incorporated in the developed system. Results from the system calibration, the structural identification and the initial period of data acquisition are presented in this paper.

Study on the Life Cycle Management System of the Marine Transmission Tower Structures (해상철탑구조물의 수명관리방안 연구)

  • Pang, Gi-Sung;Song, Young-Chul;Yoon, Deok-Joong;Kim, Do-Gyeum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.281-284
    • /
    • 2006
  • The marine Transmission tower infrastructure erected in the SI-HWA lake is deteriorated and damaged by the various environment effect, and then, there is a possibility of going bad in the safety. The appropriate maintenance to ensure the security of the structure during life cycle is necessary. Specially the Jacket or the steel file foundation in the sea is apt to be corroded quickly. In this research, to establish life management system of 345kV Yonghung marine transmission tower structure, the actual durability research facility which can obtain the actual proof data is constructed. the maintenance guideline and procedure of the structure are established. Hereafter, there is a plan which will advance the research against the composition of the life prediction model, which is based on the data acquired from the actual durability research facility.

  • PDF

A Study on Pagoda Image Search Using Artificial Intelligence (AI) Technology for Restoration of Cultural Properties

  • Lee, ByongKwon;Kim, Soo Kyun;Kim, Seokhun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2086-2097
    • /
    • 2021
  • The current cultural assets are being restored depending on the opinions of experts (craftsmen). We intend to introduce digitalized artificial intelligence techniques, excluding the personal opinions of experts on reconstruction of such cultural properties. The first step toward restoring digitized cultural properties is separation. The restoration of cultural properties should be reorganized based on recorded documents, period historical backgrounds and regional characteristics. The cultural properties in the form of photographs or images should be collected by separating the background. In addition, when restoring cultural properties most of them depend a lot on the tendency of the restoring person workers. As a result, it often occurs when there is a problem in the accuracy and reliability of restoration of cultural properties. In this study, we propose a search method for learning stored digital cultural assets using AI technology. Pagoda was selected for restoration of Cultural Properties. Pagoda data collection was collected through the Internet and various historical records. The pagoda data was classified by period and region, and grouped into similar buildings. The collected data was learned by applying the well-known CNN algorithm for artificial intelligence learning. The pagoda search used Yolo Marker to mark the tower shape. The tower was used a total of about 100-10,000 pagoda data. In conclusion, it was confirmed that the probability of searching for a tower differs according to the number of pagoda pictures and the number of learning iterations. Finally, it was confirmed that the number of 500 towers and the epochs in training of 8000 times were good. If the test result exceeds 8,000 times, it becomes overfitting. All so, I found a phenomenon that the recognition rate drops when the enemy repeatedly learns more than 8,000 times. As a result of this study, it is believed that it will be helpful in data gathering to increase the accuracy of tower restoration.